首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
利用水热合成法制备纳米NiO与多壁碳纳米管(MWCNTs)以及芳纶纸(AP)制备出一种新型复合夹层(NMAP)。NMAP夹层具有三维多孔结构,不但减小了活性物质的损失,还可以捕获可溶性多硫化物;NMAP夹层具有较强的化学吸附聚硫化物的能力。利用透射电子显微镜(TEM)、扫描电镜(SEM)、X射线衍射(XRD)等对复合夹层进行结构和性能的表征。电化学测试结果表明,NMAP夹层高性能锂硫电池在0.05C倍率下首次放电比容量达到1437 mAh·g^-1,活性物质的利用率高达85.8%;在4C大倍率下放电比容量仍然达到668 mAh·g^-1,且库伦效率仍然保持在99.1%;显示出良好的倍率和循环性能。  相似文献   

2.
以单质硫为正极的锂硫电池表现出极高的放电比容量(1672 mAh·g-1),是极具潜力的下一代二次动力电池。然而,充放电过程中溶解的高阶多硫化锂(Li2Sn,4≤n≤8)的穿梭效应,以及硫物种缓慢的氧化还原动力学过程是锂硫电池商业应用前需要解决的关键问题。而电化学催化的引入是解决上述问题行之有效的策略。本文从电化学催化角度出发,重新讨论认识多硫化物的存在形式,并从吸附-催化、活性中间体两个方面,根据不同的反应机理、路径分析多硫化物转化机制,总结定量评价催化性能方法,以期为锂硫电池高效电催化剂的设计提供思路。  相似文献   

3.
锂硫电池是高能量密度储能体系的重要发展方向, 但其本征的“固-液-固”转化过程缓慢, 穿梭效应的存在使其循环寿命和能量密度远低于理论值. 如何加速硫的可逆反应成为实现锂硫电池变革性突破的关键. 近年来, 催化过程在锂硫电池研究中崭露头角, 高效催化剂的引入能够降低硫转化的势垒, 加速“固-液-固”转化进程, 提高硫的利用率, 从“准源头”上降低穿梭效应发生的概率, 减少电解液需求量, 提升锂硫电池整体性能. 本文综合评述了锂硫电池中高效催化材料的研究进展, 提出原位表征技术对催化机理研究的重要性和紧迫性, 并对锂硫电池未来的技术发展趋势进行了展望.  相似文献   

4.
王欣  张冬  杜菲 《应用化学》2022,39(4):513-527
锂硫电池因其较高的理论比容量和能量密度而成为最有前途的下一代储能系统之一。然而,硫和放电产物硫化锂的低导电率、可溶性多硫化锂(LiPSs)的穿梭以及缓慢的反应动力学致使锂硫电池的循环寿命短、倍率性能低。近年来,研究表明具有强催化活性的单原子(SAs)是理想的LiPSs锚定中心和催化位点。用SAs修饰正极和隔膜有助于吸附多硫化物并催化其转化,修饰负极则可显著提高锂的剥离/沉积效率,抑制锂枝晶的生长。本文综述了SAs在锂硫电池中的研究进展,包括材料合成、表征方法以及应用方向。最后,对SAs应用在电池中所面临的挑战和未来发展方向进行总结。  相似文献   

5.
邵钦君  陈剑 《电化学》2020,26(5):694
单质硫作为电池的正极材料,其电化学过程历经多个步骤,完全放电生成最终产物是一个2电子反应. 低阶多硫化锂的生成需克服一定的能垒,且由Li2S2得到一个电子还原生成Li2S的反应是速控步骤. 硫正极的反应动力学是决定锂硫电池电化学性能,如比能量、比功率、低温性能等的关键因素. 提高速控步骤的反应动力学还能加速可溶性多硫化锂Li2S4向不溶性Li2S2和Li2S的转化,有利于减缓或消除多硫化锂的“穿梭效应”. 近年,已有大量的过渡金属氧化物、硫化物、碳化物、氮化物、磷化物,单原子催化剂和氧化还原电子中继体等被应用于催化硫正极反应,提高了电极的电化学性能和循环稳定性. 但是,目前详细的催化反应机制尚不完全清晰. 本文重点综述了这些化合物在硫正极反应中的作用机制,总结了近年来的研究进展,并对硫正极催化转换反应的研究和发展进行了展望.  相似文献   

6.
为减少多硫化锂(LIPs)“穿梭效应”及锂枝晶对锂硫电池的影响,采用刮涂法制备中空碳材料修饰隔膜。接触角测试表明修饰隔膜对LIPs具有更强的吸引力,其对LIPs“穿梭”的有效抑制也可以通过渗透性实验进一步得到印证。在隔膜的正极对称电池测试中,电流响应显示中空碳材料的催化使LIPs快速转化为Li2S。通过隔膜的负极对称电池测试发现修饰隔膜呈现出更稳定的电压-时间曲线。为证明隔膜修饰对锂硫电池性能改进的效果,分别采用聚丙烯(PP)隔膜、单面改性和双面改性的PP隔膜组装成纽扣电池并进行电化学测试,其中电极材料的硫负载量为1.8~2.0 mg·cm-2。GITT(恒电流间歇滴定法)测试和锂离子扩散系数计算表明,改性隔膜的离子传输更快且阻抗较小。通过分析第1、5、10、50及100次的充放电循环阻抗谱图发现,中空碳材料的多通道能够为锂离子的传输提供更多的通道,因此能够使锂离子具有更加稳定的扩散行为。在电流密度为0.2C时,由双面改性隔膜组装的锂硫电池在首次充放电时有1 035 mAh·g-1的可逆比容量,700圈后仍有500 mAh·g-1的高比容量,并在高硫负载时表现出500 mAh·g-1的可逆比容量。双面修饰隔膜赋予了锂硫电池优异的电化学性能,这是由于中空碳材料的修饰加速了LIPs的转化和吸附,有效缓解了LIPs的穿梭效应,且对锂枝晶有很好的抑制作用,提高了锂硫电池的安全性。  相似文献   

7.
为减少多硫化锂(LIPs) “穿梭效应” 及锂枝晶对锂硫电池的影响,采用刮涂法制备中空碳材料修饰隔膜。接触角测试表明修饰隔膜对 LIPs具有更强的吸引力, 其对 LIPs “穿梭” 的有效抑制也可以通过渗透性实验进一步得到印证。在隔膜的正极对称电池测试中, 电流响应显示中空碳材料的催化使 LIPs快速转化为Li2S。通过隔膜的负极对称电池测试发现修饰隔膜呈现出更稳定的电压-时间曲线。为证明隔膜修饰对锂硫电池性能改进的效果, 分别采用聚丙烯(PP)隔膜、单面改性和双面改性的 PP隔膜组装成纽扣电池并进行电化学测试, 其中电极材料的硫负载量为 1.8~2.0 mg·cm-2。GITT(恒电流间歇滴定法)测试和锂离子扩散系数计算表明, 改性隔膜的离子传输更快且阻抗较小。通过分析第 1、5、10、50及 100次的充放电循环阻抗谱图发现, 中空碳材料的多通道能够为锂离子的传输提供更多的通道, 因此能够使锂离子具有更加稳定的扩散行为。在电流密度为 0.2 C时, 由双面改性隔膜组装的锂硫电池在首次充放电时有 1 035 mAh·g-1的可逆比容量, 700圈后仍有 500 mAh·g-1的高比容量,并在高硫负载时表现出 500 mAh·g-1的可逆比容量。双面修饰隔膜赋予了锂硫电池优异的电化学性能, 这是由于中空碳材料的修饰加速了 LIPs的转化和吸附, 有效缓解了 LIPs的穿梭效应, 且对锂枝晶有很好的抑制作用, 提高了锂硫电池的安全性。  相似文献   

8.
锂硫电池由于具有能量密度高、 成本低等突出特点, 已经成为下一代高能量密度电化学储能体系的重要发展方向之一. 但锂硫电池的发展仍然存在硫利用率低、 循环寿命短及倍率性能差等亟待解决的关键问题. 单原子催化剂具有高的原子利用率和原子级尺度的结构可调变性等突出特点, 在锂硫电池研究领域受到了广泛的关注. 本文从正极、 负极、 隔膜/中间层3个方面总结了单原子催化剂在锂硫电池中的最新研究进展. 最后, 还对单原子催化剂在锂硫电池中未来的研究发展方向以及需解决的关键科学和技术问题进行了展望, 以期推动单原子催化材料在锂硫电池中的进一步广泛应用.  相似文献   

9.
杨凯  章胜男  韩东梅  肖敏  王拴紧  孟跃中 《化学进展》2018,30(12):1942-1959
锂硫电池具有远超锂离子电池的高理论比容量(1675 mAh ·g-1),并且兼具硫资源丰富、生产成本低廉以及环境友好等优势。然而,多硫离子的穿梭效应造成金属锂负极钝化、引起电池容量和库仑效率下降、循环稳定性变差等严重问题,限制锂硫电池的实际应用。从正极和负极之间的隔膜层出发,引入多硫离子穿梭的阻挡层被认为是极为有效的研究策略。这些研究策略在缓解多硫离子穿梭、提高活性物质利用效率、延长循环寿命和循环稳定性方面具有显著效果。本文分类综述了近年来锂硫电池隔膜功能化的研究进展,并对未来隔膜功能化的研究趋势进行了预测。  相似文献   

10.
李西尧  赵长欣  李博权  黄佳琦  张强 《电化学》2022,28(12):2219013
锂硫电池因其超高的理论能量密度被视为极具前景的下一代电化学储能体系,其中高比容量的硫正极提供了锂硫电池的能量密度优势并直接决定了电池的实际性能。经过数十年的发展,最具前景的硫正极体系分别是硫碳复合(S/C)正极和硫化聚丙烯腈(SPAN)正极。本文系统综述了S/C正极和SPAN正极的最新研究进展。首先,简要介绍了两种正极的工作原理并进行了比较。S/C正极发生固-液-固多相转化反应,充放电表现为双平台特征。与之相比,SPAN正极发生固-固反应,充放电曲线为单平台。然后,对两种正极所面临的挑战和目前报道的优化策略进行了系统的分析与讨论。对于S/C正极,主要调控策略包括电极结构修饰、电催化剂设计与辅助氧化还原介体调控;对于SPAN正极,主要调控策略包括电极结构设计、电极形貌调控、杂原子掺杂和外源性氧化还原介体调控。最后,在电池尺度上对S/C正极和SPAN正极进行了综合比较,并对基于S/C正极和SPAN正极的锂硫电池在未来所面对的机遇与挑战进行了展望。  相似文献   

11.
杨蓉  李兰  任冰  陈丹  陈利萍  燕映霖 《化学进展》2018,30(11):1681-1691
锂硫电池是以锂为负极,单质硫为正极的二次电池,具有高达1675 mA·h/g的比容量及2600 W·h/kg的比能量密度。理论上讲,相较于现有的锂离子电池,锂硫电池可使容量扩展5倍,这使其成为最有前景的锂离子电池。由于硫正极的绝缘性以及充放电过程中活性物质易溶于电解液,导致其可实现的能量密度远低于理论值。异原子掺杂石墨烯因具有优异的导电性,且对多硫化锂(LiPS)具有强的吸附作用而被广泛应用于锂硫电池,有效缓解了"穿梭效应",提高了电池的循环稳定性。本文主要从单原子掺杂、双原子掺杂两方面综述了异原子(如N,P,S,B)掺杂石墨烯在锂硫电池领域的研究现状,详细分析了其应用于锂硫电池的作用机理,并从掺杂量、掺杂形式、掺杂位置等方面对电池性能的提升进行了梳理和展望。  相似文献   

12.
锂硫电池因具有远高于传统锂离子电池的理论比容量和质量能量密度,而受到人们的广泛关注,近年来一直是高能锂金属电池领域的研究热点之一. 然而这一体系的一些固有特性问题依然没有得到解决,无法实现稳定理论容量输出,严重阻碍了锂硫电池的实际应用. 其中,比较突出的问题是电池充放电过程中生成可溶性中间产物-多硫化物-对硫基正极、锂基负极和电解液等电池关键组成部分具有深刻的影响. 本综述从多硫化物的热力学和动力学等性质入手,详细介绍了锂硫电池中关键材料的功能化设计和优化策略,并对未来的发展做出展望.  相似文献   

13.
The global energy crisis and environmental problems are becoming increasingly serious. It is now urgent to vigorously develop an efficient energy storage system. Lithium-sulfur batteries (LSBs) are considered to be one of the most promising candidates for next-generation energy storage systems due to their high energy density. Sulfur is abundant on Earth, low-cost, and environmentally friendly, which is consistent with the characteristics of new clean energy. Although LSBs possess numerous advantages, they still suffer from numerous problems such as the dissolution and diffusion of sulfur intermediate products during the discharge process, the expansion of the electrode volume, and so on, which severely limit their further development. Graphene is a two-dimensional crystal material with a single atomic layer thickness and honeycomb bonding structure formed by sp2 hybridization of carbon atoms. Since its discovery in 2004, graphene has attracted worldwide attention due to its excellent physical and chemical properties. Herein, this review summarizes the latest developments in graphene frameworks, heteroatom-modified graphene, and graphene composite frameworks in sulfur cathodes. Moreover, the challenges and future development of graphene-based sulfur cathodes are also discussed.  相似文献   

14.
锂硫电池的商用化受到硫和多硫化锂低的电导率、多硫化锂在有机电解液中的溶解、放电过程中硫的体积膨胀等因素的制约。我们通过自模板法制备了具有石墨化孔壁结构的介孔碳纳米纤维(MCNF),并利用这种结构将硫和多硫化锂封装在碳骨架内。具有石墨化孔壁结构的一维MCNF能够在循环中为硫和多硫化锂提供良好的导电网络。MCNF中小的介孔能够抑制长链多硫化锂的扩散。另外,MCNF大的孔容能够负载比较多的硫,并且能够为硫的放电膨胀提供足够的纳米空间。本工作制备的MCNF-硫纳米复合材料在0.8A·g-1的电流密度下,经过100次循环后仍有820mAh·g-1的比容量。  相似文献   

15.
锂硫电池的商用化受到硫和多硫化锂低的电导率、多硫化锂在有机电解液中的溶解、放电过程中硫的体积膨胀等因素的制约。我们通过自模板法制备了具有石墨化孔壁结构的介孔碳纳米纤维(MCNF),并利用这种结构将硫和多硫化锂封装在碳骨架内。具有石墨化孔壁结构的一维MCNF能够在循环中为硫和多硫化锂提供良好的导电网络。MCNF中小的介孔能够抑制长链多硫化锂的扩散。另外,MCNF大的孔容能够负载比较多的硫,并且能够为硫的放电膨胀提供足够的纳米空间。本工作制备的MCNF-硫纳米复合材料在0.8 A·g-1的电流密度下,经过100次循环后仍有820 mAh·g-1的比容量。  相似文献   

16.
卢赟  史宏娟  苏岳锋  赵双义  陈来  吴锋 《化学进展》2021,33(9):1598-1613
可移动电子设备、电动汽车及站式储能的蓬勃发展对具有高能量密度和长循环寿命的储能体系的开发提出了迫切需求。锂硫电池由于活性物质硫成本低廉并具有高理论能量密度(2600 Wh·kg-1),成为最具希望的下一代可充电电池。但是,硫及其放电产物导电性差以及多硫化物溶解穿梭导致的一系列严重问题制约了锂硫电池的实际应用。碳基材料通常被用作硫载体以改善正极的导电性,然而,非极性碳材料与极性多硫化物的相互作用较弱,对于多硫化物仅起到有限的物理吸附和阻挡作用,穿梭效应所导致的电池容量严重衰减问题难以得到有效改善。通过杂原子如N、S、Co、B等的掺杂可在碳材料上引入极性或化学吸附位点,大大增强了碳材料对于多硫化物的吸附能力,有效改善了电池的循环稳定性,并且由于掺杂改变了碳材料的电子结构,甚至可以提升碳材料的电子导电性,从而提高了活性物质的利用率。本文对锂硫电池中多孔碳、碳纳米管以及石墨烯等碳基材料常用的元素掺杂进行了介绍,其中包括单元素掺杂、双元素掺杂和多元素掺杂,分析了不同掺杂元素对碳基材料性能的影响,并对元素掺杂碳基材料在锂硫电池中的发展前景进行了展望。  相似文献   

17.
惠鹏  杨蓉  邓七九  燕映霖  许云华 《化学通报》2019,82(11):982-988
锂硫电池因其能量密度高、原料丰富和价格低廉等优势而被认为是下一代的重要储能器件。但是,锂硫电池的发展仍面临诸多问题,包括多硫化物的穿梭效应、单质硫的导电性差、充电过程中硫体积膨胀导致的库仑效率差、容量快速衰减以及锂负极的腐蚀等。近年来,金属氧化物由于具有可吸附多硫化物、提高多硫化物之间的相互转化能力、形成3D形态纳米级结构及对主体材料与多硫化物之间的结合能发挥着关键作用等优点在锂硫电池正极材料的改性方面得到广泛应用。本文综述了多类金属氧化物(过渡金属氧化物、二元及多元金属氧化物、其他金属氧化物)在锂硫电池正极复合材料改性中的研究进展,并对金属氧化物在锂硫电池中的应用前景进行了展望。  相似文献   

18.
碳基复合材料由于结构可变、形貌可调、成分可控,能够展现出优异的理化特性,在能源存储和转化领域具有极大的应用潜力.其中,锂-硫电池作为高效的能源存储和转化器件,长期受困于硫(S)和硫化锂(Li2S)绝缘的瓶颈,亟需开发高导电的储硫载体帮助锂-硫电池实现可逆充放电.研究表明,碳基复合材料具有强的导电能力,且可以通过表/界面...  相似文献   

19.
姬璇  汪佳裕  王安邦  王维坤  姚明  黄雅钦 《电化学》2022,28(12):2219010
硫化聚丙烯腈因其不溶解机制和有效缓解锂硫电池中多硫化物“穿梭效应”,被认为是具有吸引力的锂硫电池正极候选材料。硫化聚丙烯腈的导电聚合物骨架具有优异的电子导电性,同时共轭主链能有效解决充放电过程中硫正极体积变化引起的正极结构坍塌问题。因硫化聚丙烯腈的固-固反应机理,有效克服了传统硫正极在醚类电解液中多硫化物溶解及穿梭效应的问题,具有高正极活性物质利用率、出色的循环稳定性和结构稳定性等优势。有许多研究工作致力于通过硫化促进剂来提高硫化聚丙烯腈的硫含量,进而提高材料的能量密度。其中,硫化聚丙烯腈主链的环化度与循环稳定性的关系引起了我们的关注。在该研究工作中,通过在硫化过程中引入无水硫酸铜和正乙基正苯基二硫代氨基甲酸锌(ZDB)合成了SPAN-C-V复合材料。无水硫酸铜和ZDB的共同引入降低了聚丙烯腈环化反应的起始温度,同时提高了产物SPAN-C-V内碳碳双键的含量,在提高了材料硫含量的同时提高了其环化度。以SPAN-C-V为正极活性物质所组装的锂硫电池展现出良好的循环稳定性和倍率性能:在0.2 C (1 C = 600 mAh·kg-1)下循环100次后的可逆容量为601 mAh·kg-1,容量保持率为93%。该工作对于硫化聚丙烯腈材料的发展提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号