首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ma and Spinrad have shown that every transitive orientation of a chordal comparability graph is the intersection of four linear orders. That is, chordal comparability graphs are comparability graphs of posets of dimension four. Among other uses, this gives an implicit representation of a chordal comparability graph using O(n) integers so that, given two vertices, it can be determined in O(1) time whether they are adjacent, no matter how dense the graph is. We give a linear time algorithm for finding the four linear orders, improving on their bound of O(n2).  相似文献   

2.
Distance labeling schemes are schemes that label the vertices of a graph with short labels in such a way that the distance between any two vertices u and v can be determined efficiently (e.g., in constant or logarithmic time) by merely inspecting the labels of u and v, without using any other information. Similarly, routing labeling schemes are schemes that label the vertices of a graph with short labels in such a way that given the label of a source vertex and the label of a destination, it is possible to compute efficiently (e.g., in constant or logarithmic time) the port number of the edge from the source that heads in the direction of the destination. In this paper we show that the three major classes of non-positively curved plane graphs enjoy such distance and routing labeling schemes using O(log2n) bit labels on n-vertex graphs. In constructing these labeling schemes interesting metric properties of those graphs are employed.  相似文献   

3.
In this note, we give a new short proof of the following theorem: Let G be a 2-connected graph of order n. If for any two vertices u and v with d(u,v)=2,max{d(u),d(v)}?c/2, then the circumference of G is at least c, where 3?c?n and d(u,v) is the distance between u and v in G.  相似文献   

4.
Let D(G)=(di,j)n×n denote the distance matrix of a connected graph G with order n, where dij is equal to the distance between vi and vj in G. The largest eigenvalue of D(G) is called the distance spectral radius of graph G, denoted by ?(G). In this paper, some graft transformations that decrease or increase ?(G) are given. With them, for the graphs with both order n and k pendant vertices, the extremal graphs with the minimum distance spectral radius are completely characterized; the extremal graph with the maximum distance spectral radius is shown to be a dumbbell graph (obtained by attaching some pendant edges to each pendant vertex of a path respectively) when 2≤kn−2; for k=1,2,3,n−1, the extremal graphs with the maximum distance spectral radius are completely characterized.  相似文献   

5.
We give a complete classification of the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n)=n! has Sheffer factorial function D(n) identical to that of the infinite Boolean algebra, the infinite Boolean algebra with two new coatoms inserted, or the infinite cubical poset. Moreover, we are able to classify the Sheffer factorial functions of Eulerian Sheffer posets with binomial factorial function B(n)=2n−1 as the doubling of an upside-down tree with ranks 1 and 2 modified. When we impose the further condition that a given Eulerian binomial or Eulerian Sheffer poset is a lattice, this forces the poset to be the infinite Boolean algebra BX or the infinite cubical lattice . We also include several poset constructions that have the same factorial functions as the infinite cubical poset, demonstrating that classifying Eulerian Sheffer posets is a difficult problem.  相似文献   

6.
This article considers informative labeling schemes for graphs. Specifically, the question introduced is whether it is possible to label the vertices of a graph with short labels in such a way that the distance between any two vertices can be inferred from inspecting their labels. A labeling scheme enjoying this property is termed a proximity‐preserving labeling scheme. It is shown that, for the class of n‐vertex weighted trees with M‐bit edge weights, there exists such a proximity‐preserving labeling scheme using O(M log n + log2n) bit labels. For the family of all n‐vertex unweighted graphs, a labeling scheme is proposed that using O(log2 n · κ · n1/κ) bit labels can provide approximate estimates to the distance, which are accurate up to a factor of In particular, using O(log3n) bit labels, the scheme can provide estimates accurate up to a factor of $\sqrt{2 \log n}$. (For weighted graphs, one of the log n factors in the label size is replaced by a factor logarithmic in the network's diameter.) © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 167–176, 2000  相似文献   

7.
We present algorithms for maintaining data structures supporting fast (polylogarithmic) point-location and ray-shooting queries in arrangements of hyperplanes. This data structure allows for deletion and insertion of hyperplanes. Our algorithms use random bits in the construction of the data structure but do not make any assumptions about the update sequence or the hyperplanes in the input. The query bound for our data structure isÕ(polylog(n)), wheren is the number of hyperplanes at any given time, and theÕ notation indicates that the bound holds with high probability, where the probability is solely with respect to randomization in the data structure. By high probability we mean that the probability of error is inversely proportional to a large degree polynomial inn. The space requirement isÕ(n d). The cost of update isÕ(n d?1 logn. The expected cost of update isO(n d?1); the expectation is again solely with respect to randomization in the data structure. Our algorithm is extremely simple. We also give a related algorithm with optimalÕ(logn) query time, expectedO(n d) space requirement, and amortizedO(n d?1) expected cost of update. Moreover, our approach has a versatile quality which is likely to have further applications to other dynamic algorithms. Ford=2, 3 we also show how to obtain polylogarithmic update time in the CRCW PRAM model so that the processor-time product matches (within a polylogarithmic factor) the sequential update time.  相似文献   

8.
In 2009, Janson [Poset limits and exchangeable random posets, Institut Mittag-Leffler preprint, 36pp, arXiv:0902.0306] extended the recent theory of graph limits to posets, defining convergence for poset sequences and proving that every such sequence has a limit object. In this paper, we focus on k-dimensional poset sequences. This restriction leads to shorter proofs and to a more intuitive limit object. As before, the limit object can be used as a model for random posets, which generalizes the well known random k-dimensional poset model. This investigation also leads to a definition of quasirandomness for k-dimensional posets, which can be captured by a natural distance that measures the discrepancy of a k-dimensional poset.  相似文献   

9.
Let B(n) be the subset lattice of \({\{1,2,\dots, n\}.}\) Sperner’s theorem states that the width of B(n) is equal to the size of its biggest level. There have been several elegant proofs of this result, including an approach that shows that B(n) has a symmetric chain partition. Another famous result concerning B(n) is that its cover graph is hamiltonian. Motivated by these ideas and by the Middle Two Levels conjecture, we consider posets that have the Hamiltonian Cycle–Symmetric Chain Partition (HC-SCP) property. A poset of width w has this property if its cover graph has a hamiltonian cycle which parses into w symmetric chains. We show that the subset lattices have the HC-SCP property, and we obtain this result as a special case of a more general treatment.  相似文献   

10.
In recent years, researchers have shown renewed interest in combinatorial properties of posets determined by geometric properties of its order diagram and topological properties of its cover graph. In most cases, the roots for the problems being studied today can be traced back to the 1970’s, and sometimes even earlier. In this paper, we study the problem of bounding the dimension of a planar poset in terms of the number of minimal elements, where the starting point is the 1977 theorem of Trotter and Moore asserting that the dimension of a planar poset with a single minimal element is at most 3. By carefully analyzing and then refining the details of this argument, we are able to show that the dimension of a planar poset with t minimal elements is at most 2t + 1. This bound is tight for t = 1 and t = 2. But for t ≥ 3, we are only able to show that there exist planar posets with t minimal elements having dimension t + 3. Our lower bound construction can be modified in ways that have immediate connections to the following challenging conjecture: For every d ≥ 2, there is an integer f(d) so that if P is a planar poset with dim(P) ≥ f(d), then P contains a standard example of dimension d. To date, the best known examples only showed that the function f, if it exists, satisfies f(d) ≥ d + 2. Here, we show that lim d→∞ f(d)/d ≥ 2.  相似文献   

11.
12.
For a poset P=(X,≤), the upper bound graph (UB-graph) of P is the graph U=(X,EU), where uvEU if and only if uv and there exists mX such that u,vm. For a graph G, the distance two graph DS2(G) is the graph with vertex set V(DS2(G))=V(G) and u,vV(DS2(G)) are adjacent if and only if dG(u,v)=2. In this paper, we deal with distance two graphs of upper bound graphs. We obtain a characterization of distance two graphs of split upper bound graphs.  相似文献   

13.
Gibbs sampling also known as Glauber dynamics is a popular technique for sampling high dimensional distributions defined on graphs. Of special interest is the behavior of Gibbs sampling on the Erd?s–Rényi random graph G(n, d/n), where each edge is chosen independently with probability d/n and d is fixed. While the average degree in G(n, d/n) is d(1?o(1)), it contains many nodes of degree of order (log n) / (log log n). The existence of nodes of almost logarithmic degrees implies that for many natural distributions defined on G(n, d/n) such as uniform coloring (with a constant number of colors) or the Ising model at any fixed inverse temperature β, the mixing time of Gibbs sampling is at least n 1+Ω(1 / log log n) with high probability. High degree nodes pose a technical challenge in proving polynomial time mixing of the dynamics for many models including coloring. Almost all known sufficient conditions in terms of number of colors needed for rapid mixing of Gibbs samplers are stated in terms of the maximum degree of the underlying graph. In this work we consider sampling q-colorings and show that for every d < ∞ there exists q(d) < ∞ such that for all qq(d) the mixing time of the Gibbs sampling on G(n, d/n) is polynomial in n with high probability. Our results are the first polynomial time mixing results proven for the coloring model on G(n, d/n) for d > 1 where the number of colors does not depend on n. They also provide a rare example where one can prove a polynomial time mixing of Gibbs sampler in a situation where the actual mixing time is slower than npolylog(n). In previous work we have shown that similar results hold for the ferromagnetic Ising model. However, the proof for the Ising model crucially relied on monotonicity arguments and the “Weitz tree”, both of which have no counterparts in the coloring setting. Our proof presented here exploits in novel ways the local treelike structure of Erd?s–Rényi random graphs, block dynamics, spatial decay properties and coupling arguments. Our results give the first polynomial-time algorithm to approximately sample colorings on G(n, d/n) with a constant number of colors. They extend to much more general families of graphs which are sparse in some average sense and to much more general interactions. In particular, they apply to any graph for which there exists an α > 0 such that every vertex v of the graph has a neighborhood N(v) of radius O(log n) in which the induced sub-graph is the union of a tree and at most O(1) edges and where each simple path Γ of length O(log n) satisfies ${\sum_{u \in \Gamma}\sum_{v \neq u}\alpha^{d(u,v)} = O({\rm log} n)}$ . The results also generalize to the hard-core model at low fugacity and to general models of soft constraints at high temperatures.  相似文献   

14.
A labeling of graph G with a condition at distance two is an integer labeling of V(G) such that adjacent vertices have labels that differ by at least two, and vertices distance two apart have labels that differ by at least one. The lambda-number of G, λ(G), is the minimum span over all labelings of G with a condition at distance two. Let G(n, k) denote the set of all graphs with order n and lambda-number k. In this paper, we examine the sizes of graphs in G(n, k). We modify Chvàtal's result on non-hamiltonian graphs to obtain a formula for the minimum size of a graph in G(n, k), and we use an algorithmic approach to obtain a formula for the maximum size. Finally, we show that for any integer j between the maximum and minimum sizes there exists a graph with size j in G(n, k). © 1996 John Wiley & Sons, Inc.  相似文献   

15.
We prove a theorem on partitioning point sets inE d (d fixed) and give an efficient construction of partition trees based on it. This yields a simplex range searching structure with linear space,O(n logn) deterministic preprocessing time, andO(n 1?1/d (logn) O(1)) query time. WithO(nlogn) preprocessing time, where δ is an arbitrary positive constant, a more complicated data structure yields query timeO(n 1?1/d (log logn) O(1)). This attains the lower bounds due to Chazelle [C1] up to polylogarithmic factors, improving and simplifying previous results of Chazelleet al. [CSW]. The partition result implies that, forr dn 1?δ, a (1/r)-approximation of sizeO(r d) with respect to simplices for ann-point set inE d can be computed inO(n logr) deterministic time. A (1/r)-cutting of sizeO(r d) for a collection ofn hyperplanes inE d can be computed inO(n logr) deterministic time, provided thatrn 1/(2d?1).  相似文献   

16.
The graph of a partially ordered set (X, ?) has X as its set of vertices and (x,y) is an edge if and only if x covers y or y covers x. The poset is path-connected if its graph is connected. Two integer-valued metrics, distance and fence, are defined for path-connected posets. Together the values of these metrics determine a path-connected poset to within isomorphism and duality. The result holds for path-connected preordered sets where distance and fence are pseudometrics. The result fails for non-path-connected posets.  相似文献   

17.
Cliquewidth and NLC-width are two closely related parameters that measure the complexity of graphs. Both clique- and NLC-width are defined to be the minimum number of labels required to create a labelled graph by certain terms of operations. Many hard problems on graphs become solvable in polynomial-time if the inputs are restricted to graphs of bounded clique- or NLC-width. Cliquewidth and NLC-width differ at most by a factor of two.The relative counterparts of these parameters are defined to be the minimum number of labels necessary to create a graph while the tree-structure of the term is fixed. We show that Relative Cliquewidth and Relative NLC-width differ significantly in computational complexity. While the former problem is NP-complete the latter is solvable in polynomial time. The relative NLC-width can be computed in O(n3) time, which also yields an exact algorithm for computing the NLC-width in time O(3nn). Additionally, our technique enables a combinatorial characterisation of NLC-width that avoids the usual operations on labelled graphs.  相似文献   

18.
This paper presents fast parallel algorithms for the following graph theoretic problems: breadth-depth search of directed acyclic graphs; minimum-depth search of graphs; finding the minimum-weighted paths between all node-pairs of a weighted graph and the critical activities of an activity-on-edge network. The first algorithm hasO(logdlogn) time complexity withO(n 3) processors and the remaining algorithms achieveO(logd loglogn) time bound withO(n 2[n/loglogn]) processors, whered is the diameter of the graph or the directed acyclic graph (which also represents an activity-on-edge network) withn nodes. These algorithms work on an unbounded shared memory model of the single instruction stream, multiple data stream computer that allows both read and write conflicts.  相似文献   

19.
In 1941, Dushnik and Miller introduced the concept of the dimension of a poset (X, P) as the minimum number of linear extensions of P whose intersection is exactly P. Although Dilworth has given a formula for the dimension of distributive lattices, the general problem of determining the dimension of a poset is quite difficult. An equally difficult problem is to classify those posets which are dimension irreducible, i.e., those posets for which the removal of any point lowers the dimension. In this paper, we construct for each n≥3, k≥0, a poset, called a crown and denoted Skn, for which the dimension is given by the formula 2?(n+k)(k+2). Furthermore, for each t≥3, we show that there are infinitely many crowns which are irreducible and have dimension t. We then demonstrate a method of combining a collection of irreducible crowns to form an irreducible poset whose dimension is the sum of the crowns in the collection. Finally, we construct some infinite crowns possessing combinatorial properties similar to finite crowns.  相似文献   

20.
Given a directed graph G=(V, E) and an integer k ≥ 1, a k-transitive-closure spanner (k-TC-spanner) of G is a directed graph H=(V, E H ) that has (1) the same transitive closure as G and (2) diameter at most k. In some applications, the shortcut paths added to the graph in order to obtain small diameter can use Steiner vertices, that is, vertices not in the original graph G. The resulting spanner is called a Steiner transitive-closure spanner (Steiner TC-spanner). Motivated by applications to property reconstruction and access control hierarchies, we concentrate on Steiner TC-spanners of directed acyclic graphs or, equivalently, partially ordered sets. In these applications, the goal is to find a sparsest Steiner k-TC-spanner of a poset G for a given k and G. The focus of this paper is the relationship between the dimension of a poset and the size of its sparsest Steiner TC-spanner. The dimension of a poset G is the smallest d such that G can be embedded into a d-dimensional directed hypergrid via an order-preserving embedding. We present a nearly tight lower bound on the size of Steiner 2-TC-spanners of d- dimensional directed hypergrids. It implies better lower bounds on the complexity of local reconstructors of monotone functions and functions with small Lipschitz constant. The lower bound is derived from an explicit dual solution to a linear programming relaxation of the Steiner 2-TC-spanner problem. We also give an efficient construction of Steiner 2-TC-spanners, of size matching the lower bound, for all low-dimensional posets. Finally, we present a lower bound on the size of Steiner k-TC-spanners of d-dimensional posets. It shows that the best-known construction, due to De Santis et al., cannot be improved significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号