首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Suppose that G is a planar graph with maximum degree Δ and without intersecting 4-cycles, that is, no two cycles of length 4 have a common vertex. Let χ(G), and denote the total chromatic number, list edge chromatic number and list total chromatic number of G, respectively. In this paper, it is proved that χ(G)=Δ+1 if Δ≥7, and and if Δ(G)≥8. Furthermore, if G is a graph embedded in a surface of nonnegative characteristic, then our results also hold.  相似文献   

3.
A 2-coloring is a coloring of vertices of a graph with colors 1 and 2. Define Vi?{vV(G):c(v)=i} for i=1 and 2. We say that G is (d1,d2)-colorable if G has a 2-coloring such that Vi is an empty set or the induced subgraph G[Vi] has the maximum degree at most di for i=1 and 2. Let G be a planar graph without 4-cycles and 5-cycles. We show that the problem to determine whether G is (0,k)-colorable is NP-complete for every positive integer k. Moreover, we construct non-(1,k)-colorable planar graphs without 4-cycles and 5-cycles for every positive integer k. In contrast, we prove that G is (d1,d2)-colorable where (d1,d2)=(4,4),(3,5), and (2,9).  相似文献   

4.
Hua Cai 《数学学报(英文版)》2015,31(12):1951-1962
A k-total-coloring of a graph G is a coloring of vertices and edges of G using k colors such that no two adjacent or incident elements receive the same color.In this paper,it is proved that if G is a planar graph with Δ(G) ≥ 7 and without chordal 7-cycles,then G has a(Δ(G) + 1)-total-coloring.  相似文献   

5.
Planar graphs without 5-cycles or without 6-cycles   总被引:1,自引:0,他引:1  
Qin Ma  Xiao Yu 《Discrete Mathematics》2009,309(10):2998-1187
Let G be a planar graph without 5-cycles or without 6-cycles. In this paper, we prove that if G is connected and δ(G)≥2, then there exists an edge xyE(G) such that d(x)+d(y)≤9, or there is a 2-alternating cycle. By using the above result, we obtain that (1) its linear 2-arboricity , (2) its list total chromatic number is Δ(G)+1 if Δ(G)≥8, and (3) its list edge chromatic number is Δ(G) if Δ(G)≥8.  相似文献   

6.
Min Chen 《Discrete Mathematics》2008,308(24):6216-6225
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L-list colorable if for a given list assignment L={L(v):vV}, there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper we prove that every planar graph without 4-cycles and without two 3-cycles at distance less than 3 is acyclically 5-choosable. This improves a result in [M. Montassier, P. Ochem, A. Raspaud, On the acyclic choosability of graphs, J. Graph Theory 51 (2006) 281-300], which says that planar graphs of girth at least 5 are acyclically 5-choosable.  相似文献   

7.
Given lists of available colors assigned to the vertices of a graph G, a list coloring is a proper coloring of G such that the color on each vertex is chosen from its list. If the lists all have size k, then a list coloring is equitable if each color appears on at most ?|V(G)|/k? vertices. A graph is equitably kchoosable if such a coloring exists whenever the lists all have size k. Kostochka, Pelsmajer, and West introduced this notion and conjectured that G is equitably k‐choosable for k>Δ(G). We prove this for graphs of treewidth w≤5 if also k≥3w?1. We also show that if G has treewidth w≥5, then G is equitably k‐choosable for k≥max{Δ(G)+w?4, 3w?1}. As a corollary, if G is chordal, then G is equitably k‐choosable for k≥3Δ(G)?4 when Δ(G)>2. © 2009 Wiley Periodicals, Inc. J Graph Theory  相似文献   

8.
9.
Every planar graph is known to be acyclically 7-choosable and is conjectured to be acyclically 5-choosable (Borodin et al. 2002) [7]. This conjecture if proved would imply both Borodin’s acyclic 5-color theorem (1979) and Thomassen’s 5-choosability theorem (1994). However, as yet it has been verified only for several restricted classes of graphs.Some sufficient conditions are also obtained for a planar graph to be acyclically 4-choosable and 3-choosable. In particular, acyclic 4-choosability was proved for the following planar graphs: without 3-cycles and 4-cycles (Montassier, 2006 [23]), without 4-cycles, 5-cycles and 6-cycles (Montassier et al. 2006 [24]), and either without 4-cycles, 6-cycles and 7-cycles, or without 4-cycles, 6-cycles and 8-cycles (Chen et al. 2009 [14]).In this paper it is proved that each planar graph with neither 4-cycles nor 6-cycles adjacent to a triangle is acyclically 4-choosable, which covers these four results.  相似文献   

10.
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L-list colorable if for a given list assignment L={L(v):vV}, there exists a proper acyclic coloring ? of G such that ?(v)∈L(v) for all vV(G). If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper it is proved that every planar graph with neither 4-cycles nor chordal 6-cycles is acyclically 5-choosable. This generalizes the results of [M. Montassier, A. Raspaud, W. Wang, Acyclic 5-choosability of planar graphs without small cycles, J. Graph Theory 54 (2007) 245-260], and a corollary of [M. Montassier, P. Ochem, A. Raspaud, On the acyclic choosability of graphs, J. Graph Theory 51 (4) (2006) 281-300].  相似文献   

11.
12.
LetGbe a planar graph with maximum degreeΔ.In this paper,we prove that if any4-cycle is not adjacent to ani-cycle for anyi∈{3,4}in G,then the list edge chromatic numberχl(G)=Δand the list total chromatic numberχl(G)=Δ+1.  相似文献   

13.
14.
15.
A graph G is edge-L-colorable, if for a given edge assignment L={L(e):eE(G)}, there exists a proper edge-coloring ? of G such that ?(e)∈L(e) for all eE(G). If G is edge-L-colorable for every edge assignment L with |L(e)|≥k for eE(G), then G is said to be edge-k-choosable. In this paper, we prove that if G is a planar graph with maximum degree Δ(G)≠5 and without adjacent 3-cycles, or with maximum degree Δ(G)≠5,6 and without 7-cycles, then G is edge-(Δ(G)+1)-choosable.  相似文献   

16.
图G的一个无圈边着色是一个正常的边着色且不含双色的圈.图G的无圈边色数是图G的无圈边着色中所用色数的最小者.本文用反证法得到了不含5-圈的平面图G的无圈边色数的一个上界.  相似文献   

17.
《Discrete Mathematics》2022,345(4):112790
DP-coloring of graphs as a generalization of list coloring was introduced by Dvo?ák and Postle (2018). In this paper, we show that every planar graph without intersecting 5-cycles is DP-4-colorable, which improves the result of Hu and Wu (2017), who proved that every planar graph without intersecting 5-cycles is 4-choosable, and the results of Kim and Ozeki (2018).  相似文献   

18.
Let Δ denote the maximum degree of a graph. Fiam?ík first and then Alon et al. again conjectured that every graph is acyclically edge (Δ+2)-colorable. Even for planar graphs, this conjecture remains open. It is known that every triangle-free planar graph is acyclically edge (Δ+5)-colorable. This paper proves that every planar graph without intersecting triangles is acyclically edge (Δ+4)-colorable.  相似文献   

19.
The acyclic list chromatic number of every planar graph is proved to be at most 7. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 83–90, 2002  相似文献   

20.
A star coloring of a graph is a proper vertex‐coloring such that no path on four vertices is 2‐colored. We prove that the vertices of every planar graph of girth 6 (respectively 7, 8) can be star colored from lists of size 8 (respectively 7, 6). We give an example of a planar graph of girth 5 that requires 6 colors to star color. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 324–337, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号