首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mechanistic investigation on spherical assembly of the unique one-dimensional ZnO nanorods, solid nanocones, or hollow prisms with the closed -c end, directed by poly ethylene glycol (PEG) with different molecular weights, has been carried out using spectroscopic methods. The single crystalline ZnO nanoprisms, hollow along the c axis but closed at the -c end, aggregate to urchin-type globules in the microscale when PEG 2000 is used as directing reagent, while spherical aggregates of single crystalline ZnO nanocones are obtained under the direction of PEG 200. Studies reveal that both the PEG molecules aggregate to globules by interacting with zinc species in suitable solvents and englobe the zinc species. By the short time of ultrasonic pretreatment on the solution, a kind of flagellum structure is induced around the globules, in long tubular shapes for PEG 2000 but as shorter wedges for PEG 200. The globules with flagellums are templates for the assembly of the ZnO nanotubes or ZnO nanocones in the hydrothermal treatment. The tiny ZnO crystallites, produced in the hydrothermal process, stack to the templates and amalgamate to single crystalline nanotubes or nanocones, similar to the oriented attachment mechanism. The PEG 2000 template is included in the ZnO cavity of nanotubes, while PEG 200 is excluded from the ZnO nanocones due to the different intertwist properties between the two PEG molecules. Both the urchin-type assemblies, possessing the same external crystalline plane, compose a isotropic powder and emit very strong yellow light, centered at approximately 2.1 eV, under the excitation of the He-Cd laser at 325 nm, which has been correlated to the specific crystal plane. The special powders will be easily coated onto any type of surface for the decoration of a large area of surfaces for future applications.  相似文献   

2.
Controlled-release systems that respond to external stimuli have received great interest for use in medical treatments such as for drug delivery to specific sites. Gold nanorods have an absorption band at the near-infrared region and convert the absorbed light energy into heat, which is known as a "photothermal effect". Therefore, gold nanorods are expected to act not only as an on-demand thermal converter for photothermal therapy but also as a controller of a drug-release system capable of responding to the near-infrared light irradiation. In this study, to construct a controlled-release system that responds to near-infrared light irradiation, we modified gold nanorods with polyethylene glycol (PEG) through Diels-Alder cycloadducts. When the modified gold nanorods were irradiated by near-infrared light, the PEG chains were released from the gold nanorods because of the retro Diels-Alder reaction induced by the photothermal effect. As a result of the PEG release, the gold nanorods formed aggregates. This type of controlled-release system coupled with the aggregate formation of the gold nanorods triggered by near-infrared light could be expanded to applications of gold nanorods in medical fields such as drug and photothermal therapy.  相似文献   

3.
Branched MnOOH nanorods with diameters in the range of 50-150 nm and lengths of up to tens of micrometers were prepared by using potassium permanganate (KMnO(4)) and PEG 400 (PEG=polyethylene glycol) as starting materials through a simple hydrothermal process at 160 °C. After annealing at 300 °C under a N(2) atmosphere for 5 h, MnOOH nanorods became gradually dehydrated and transformed into mesoporous Mn(3)O(4) nanorods with a slight size-shrinking. The as-obtained mesoporous Mn(3)O(4) nanorods had an average surface area of 32.88 m(2) g(-1) and a mean pore size of 3.7 nm. Through tuning the experimental parameters, such as the annealing atmosphere and temperature, β-MnO(2), Mn(2)O(3), Mn(3)O(4), MnO, and Mn(5)O(8) were selectively produced. Among these structures, mesoporous Mn(3)O(4) nanorods were efficient for the catalytic degradation of methylene blue (MB) in the presence of H(2)O(2) at 80 °C.  相似文献   

4.
Abstract— As an artificial model compound of the chlorophyll-protein complex in vivo , the chlorophyll/water-soluble macromolecular complexes were prepared by using synthetic linear polymers of polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyethylene glycol (PEG), and a natural polymer of bovine serum albumin (BSA). By the method described here, it is possible to prepare an aqueous chlorophyll (Chl)-macromolecular complex solution of a desired Chi aggregate, such as: Chi a (670), Chi a (740) and Chi b ; and with a desired relative content and concentration. These procedures for preparing such complexes will have wide applicability for technical use in Chi studies. For example, extremely diluted aqueous complex solutions of at least 1 × 10-4% wt Chi a (670 or 740)-macromolecular complex / wt can be obtained without changing the spectral features. From viscosity measurements, the structures of the complexes were inferred: (1) for a linear macromolecular (PVA or PVP) complex, a Chi species is tightly surrounded by a chain of the polymer causing shrinkage of the chain; (2) globular BSA molecules surround Chi species to form a large complex. The mechanism of stabilization of Chi aggregates in thylakoid membrane was discussed concerning an analogy to the complexes studied here.  相似文献   

5.
Nanomaterials, such as metal or semiconductor nanoparticles and nanorods, exhibit similar dimensions to those of biomolecules, such as proteins (enzymes, antigens, antibodies) or DNA. The integration of nanoparticles, which exhibit unique electronic, photonic, and catalytic properties, with biomaterials, which display unique recognition, catalytic, and inhibition properties, yields novel hybrid nanobiomaterials of synergetic properties and functions. This review describes recent advances in the synthesis of biomolecule-nanoparticle/nanorod hybrid systems and the application of such assemblies in the generation of 2D and 3D ordered structures in solutions and on surfaces. Particular emphasis is directed to the use of biomolecule-nanoparticle (metallic or semiconductive) assemblies for bioanalytical applications and for the fabrication of bioelectronic devices.  相似文献   

6.
Praseodymium hydroxide nanorods were synthesized by a two-step approach: First, metallic praseodymium was used to form praseodymium chloride, which reacted subsequently with KOH solution to produce praseodymium hydroxide. In the second step the hydroxide was treated with a concentrated alkaline solution at 180 degrees C for 45 h, yielding nanorods as shown by the scanning and transmission electron microscopy images. The results of X-ray diffraction and energy-dispersive X-ray spectroscopy experiments indicate that these nanorods are pure praseodymium hydroxide with a hexagonal structure, which can be converted into praseodymium oxide (Pr6O11) nanorods of a face-centered cubic structure after calcination at 600 degrees C for 2 h in air. Gold was loaded on the praseodymium oxide nanorods using HAuCl4 as the gold source, and NaBH4 was used to reduce the gold species to metallic nanoparticles with sizes of 8-12 nm on the nanorod surface. These Au/Pr6O11 nanorods exhibit superior catalytic activity for CO oxidation.  相似文献   

7.
Ionization condition and ionic structures of the lithium ionic liquid electrolytes, LiTFSI/EMI-TFSI/(PEG or silica), were investigated through the measurements of ionic conductivity and diffusion coefficient. The size of the hydrodynamic lithium species (rLi) evaluated from the Stokes-Einstein equation was 0.90 nm before gelation with the PEG or silica. This reveals that the TFSI- anions from the solvent are coordinated on Li+ for solvation, forming, for example, Li(TFSI)4(3-) and Li(TFSI)2- in the electrolyte solution. By the dispersion of PEG for gelation, rLi increased up to 1.8 nm with the 10 wt % of PEG. This indicates that the lithium species is directly interacted with the oxygen sites on the polymer chains and the lithium species migrate, reflecting the polymer by hopping from site to site. In case of the silica dispersion, rLi decreased to 0.7 nm at 10 wt % silica. Although the silica surface with silanol groups fundamentally attracts Li+, the lithium does not migrate from site to site on the silica surface as in the gel of the polymer and follows random walk behavior in the network of the liquid-phase pathways in the two-phase gel. In the process, that solvated TFSI- anions are partially removed may be due to the attractive effect of H+, which was dissociated from the silanol group. It is concluded that the dispersed silica is effective to modify the hydrodynamic lithium species to be appropriate for charge transport as reducing the size and anionic charge of Li(TFSI)4(3-) by removing one or two TFSI- anions.  相似文献   

8.
Inclusion of a polymer cushion between a lipid bilayer membrane and a solid surface has been suggested as a means to provide a soft, deformable layer that will allow for transmembrane protein insertion and mobility. In this study, the properties of a heterofunctional, telechelic PEG lipopolymer (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-2000-N- [3-(2-(pyridyldithio)propionate]) (DSPE-PEG-PDP) adsorbed from ethanol and water solutions onto gold surfaces were studied using a variety of surface-sensitive techniques. X-ray photoelectron spectroscopy showed that the PEG molecules are tethered to the gold surface via thiolate bonds. When adsorbed from water, ethanol, or their mixtures, reflection-absorption infrared spectroscopy showed that amorphous PEG layers with disordered DSPE alkyl chains were formed, independent of adsorption time or solution concentration. On the basis of advancing and receding water and hexadecane contact angles on the lipopolymer films, the DSPE lipid groups appear to segregate from the PEG layer and become exposed at the surface of the polymer films. Swelling observed in surface plasmon resonance experiments and the large contact angle hysteresis observed indicate that highly swellable, mobile films capable of molecular rearrangements are formed. The self-assembling and amorphous properties of these PEG layers make them ideal candidates as polymer cushions for polymer-supported lipid bilayers. The DSPE surface concentration can be controlled, to a limited degree, by varying the adsorption time of DSPE-PEG-PDP from ethanol. A more effective strategy is to coadsorb DSPE-PEG-PDP with a non-lipid-functionalized PEG-PDP from an ethanol/water mixture, which allows the PEG thickness and density to remain constant while decreasing the density of DSPE groups.  相似文献   

9.
In this article, we compare structures of protonated poly(2-vinylpyridine) globules (2D compact coils on the surface) adsorbed on the mica surface from aqueous solution when the shrinking is brought about either by discharging the molecules at an elevated pH or by adding monovalent and polyvalent salts. We study the structure of the PE coils using in situ atomic force microscopy experiments in aqueous solutions in a liquid cell. The abrupt coil-to-globule transition caused by pH changes and the discharge of polymer chains resulted in compact globules. If the pH corresponding to extended coil conformation remains unchanged, the coil shrinks due to the added salt. The size of the globule in the latter case corresponds to the unperturbed dimension of the polymer coil. There is no essential difference in the dimensions of the globules as obtained in the presence of monovalent and multivalent counterions for the studied ionic strength. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1623–1627, 2010  相似文献   

10.
We apply the concept of wettability transition to manipulate the morphology and entrapment of polymer nanostructures inside cylindrical nanopores of anodic aluminum oxide (AAO) membranes. When AAO/polystyrene (PS) hybrids, i.e., AAO/PS nanorods or AAO/PS nanotubes, are immersed into a polyethylene glycol (PEG) reservoir above the glass transition temperature of PS, a wettability transition from wetting to nonwetting of PS can be triggered due to the invasion of the more wettable PEG melt. The wettability transition enables us to develop a nondestructive method to entrap hemispherically capped nanorods inside nanopores. Moreover, we can obtain single nanorods with the desired aspect ratio by further dissolving the AAO template, in contrast to the drawbacks of nonuniformity or destructiveness from the conventional ultrasonication method. In the case of AAO/PS nanotubes, the wettability transition induced dewetting of PS nanotube walls results in the disconnection and entrapment of nonwetting PS domains (i.e., nanospheres, nanocapsules, or capped nanorods). Moreover, PEG is then washed to recover the pristine wettability of PS on the alumina surface; further annealing of the PS nanospheres inside AAO nanopores under vacuum can generate some unique nanostructures, particularly semicylindrical nanorods.  相似文献   

11.
Molecular simulation of amphiphilic (AB)n star diblock copolymers in dilute solution shows that the properties of the polymer are significantly affected by which of the ends of the diblock arm is attached to the center of the star. In dilute aqueous solution, stars having the solvophilic end of the diblock attached to the center of the star can undergo a dramatic conformational change in which the outer solvophobic blocks aggregate into one or more compact solvophobic globules. This aggregation transition is accompanied by a significant change in the size of the polymer as measured by the radius of gyration.  相似文献   

12.
Herein we present the simple fabrication of magneto-polymer nanostructured composites. Specifically, large aspect ratio polymer-based magnetic nanotubes and nanorods have been prepared by means of wetting nanoporous hard templates with loaded polymer melts and solutions, respectively. Morphological characteristics of both one-dimensional composite nanostructures were evaluated by scanning electron microscopy. Moreover, important parameters of the materials such as elemental composition and distribution of the metallic elements were determined by means of X-ray diffraction, and Rutherford backscattering. The different confinement topology of the nanoparticles within the nanorods and the nanotubes leads to a stronger (i.e. ferro-) magnetic response of nanotube arrays, as determined by magnetometry. The magnetic measurements also allowed estimating the concentration of nanoparticles by means of properly fitting experimental data to a sum of different magnetic contributions to the total magnetic moment. The morphological, structural, compositional and magnetic characteristics of nanotubes and nanorods are related to the different wetting approaches used. It has to be noted that, to our knowledge, we present here the first example of nanoparticulated polymer-based composite nanotubes synthesized from the melt, which, indeed seems to be at the origin of their high morphological and compositional quality. The potential of Rutherford backscattering spectroscopy for characterizing soft composite nanostructures has to be also remarked.  相似文献   

13.
Copper sols are prepared via the reduction of copper ions with hydrazine borane in dilute aqueous solutions of mixtures of the PAA-Cu2+ complex and poly(ethylene glycols) of various molecular masses at PEG: PAA = 0.25 base-mol/base-mol and PAA: Cu2+ = 10 base-mol/mol in the pH range 4.0–7.0. The stability of sols against oxidation (dissolution) or aggregation (enlargement) of metal nanoparticles is much higher than that of sols prepared in the absence of PEG. With an increase in the initial pH or a decrease in the molecular mass of PEG, the formed copper nanoparticles are much larger (no less than 20 nm in diameter) than copper nanoparticles occurring in the sol prepared in a solution of the PAA double complex with Cu2+ ions and high-molecular-mass PEG at a low initial pH (3–10 nm in diameter). Copper nanoparticles in sols prepared in solutions of complexes based on the high-molecular-mass PEG do not aggregate during exposure, thereby indicating the high stability of polymer screens on their surfaces.  相似文献   

14.
Atomic force microscopy (AFM) of porphyrin aggregates formed on silica from acidic aqueous solution is used to investigate the basis for the previously reported counterion dependence of the optical spectra of aggregates of H(2)TCPP(2+), the diacid form of tetra(p-carboxyphenyl)porphyrin (TCPP). Resonance light scattering confirms the presence of excitonically coupled porphyrin aggregates in solutions of H(2)TCPP(2+) in both aqueous HCl and HNO(3). Aggregates formed in aqueous HNO(3) solutions show resonance light scattering (RLS) at wavelengths within both the H and J aggregate absorption bands and are imaged on the surface of silica as nanorods about 3 to 4 nm in height. H(2)TCPP(2+) aggregates in aqueous HCl solution exhibit RLS when excited within the blue-shifted Soret band (H band) and produce AFM images on silica of ring-shaped structures ranging from about 200 to 2000 nm in diameter. Fluorescence excitation and emission spectra reveal quenching of the Q-band emission in the aggregates at a pH less than 1 and confirm the existence of a single species, assigned to a dimer, at a pH just above 1. The morphology of the nanostructures as revealed by AFM provides insight into the structural basis for the counterion-dependent optical properties of H(2)TCPP(2+) aggregates.  相似文献   

15.
Li Z  Xiong Y  Xie Y 《Inorganic chemistry》2003,42(24):8105-8109
Long-chain polymer-assisted growth of one-dimensional (1D) nanostructures has been investigated in previous research. This kind mild method has lots of merits such as not requiring complex procedures, without template supporting etc. Can the short-chain polymer also be used to grow long nanowires? In the present work, a short-chain polymer (PEG400) was found to promote the formation of 1D ZnO nanostructures, which cannot be obtained by long-chain polymers (such as PEG10000). Moreover, nanowires and nanorods can be selectively synthesized by using short-chain polymers. The influence factors for the formation of 1D ZnO nanostructures were also investigated in detail. The XRD, Raman spectrum, XPS, SEM, TEM, ED, HRTEM, EDXA, and PL spectra have been provided for the characterization of the as-obtained nanowires and nanorods.  相似文献   

16.
Controlled nanoparticle assembly by dewetting of charged polymer solutions   总被引:1,自引:0,他引:1  
In this paper, we present an alternative approach for controlled nanoparticle organization on a solid substrate by applying dewetting patterns of charged polymer solutions as a templating system. Thin films of charged polymer solutions dewet a solid substrate to form complex dewetting patterns that depend on the polymer charge density. These patterns, ranging from polygonal networks to elongated structures that are stabilized by viscous forces during dewetting, serve as potential templates for two-dimensional nanoparticle organization on a solid substrate. Thus, while nanoparticles dried in pure water undergo self-assembly to form close-packed arrays, addition of charged polymer in the dispersion leads to the formation of open structures that are directed by the dewetting patterns of the polymer solution. In this study, we focus on the application of elongated structures resulting from dewetting of high-charge-density polymer solutions to align nanoparticles of silica and gold into long chains that are several micrometers in length. The particle ordering process is a two-step mechanism: an initial confinement of the nanoparticles in the dewetting structures and self-assembly of the particles within these structures upon further drying by lateral capillary attractions.  相似文献   

17.
PMMA/PVDF composite membranes were prepared by isothermal immersion-precipitation of dope solutions consisting of PMMA, PVDF, and DMSO into both harsh and soft nonsolvent baths. The effects of PMMA and DMSO contents on the membrane morphology, crystal structure, thermal behavior and tensile strength of the formed membrane were investigated. For a PMMA-free casting dope immersed in a harsh bath, such as pure water, the formed membrane exhibited a typical asymmetric morphology characterized by skin, finger-like macrovoids, and cellular pores. In contrast, when a soft 70% DMSO bath was adopted, PVDF crystallized to form a membrane packed by spherulitic globules. Incorporation of PMMA gave rise to interesting morphological features; e.g., PVDF globules were observed to adhere to the interlocked polymer branches coexisting with the continuous porous channels, as revealed by high resolution FESEM imaging. XPS analysis of the surfaces of the composite membranes suggested the occurrence of a surface segregation phenomenon, wherein PVDF preferentially migrated to the top surface region of the membrane such as to minimize the interfacial energy. XRD analyses indicated that PVDF crystallized into ‘α’ structure in both PVDF and PMMA/PVDF composite membranes. The crystallinity of the membranes was found to decrease with increasing PMMA content, which was confirmed by DSC thermal analyses. The latter results also indicated a significant decrease in membrane’s melting temperature as the PMMA content was increased. Tensile strengths of the membranes were improved by inclusion of PMMA in either harsh or soft baths. However, elongation at break showed a reversed trend.  相似文献   

18.
We study the self-assembly of symmetric star-like block copolymers (A(x))(y)(B(x))(y)C in dilute solution by using Brownian dynamics simulations. In the star-like block copolymer, incompatible A and B components are both solvophobic, and connected to the center bead C of the polymer. Therefore, this star-like block copolymer can be taken as a representative of soft and deformable Janus particles. In our Brownian dynamics simulations, these "soft Janus particles" are found to self-assemble into worm-like lamellar structures, loose aggregates and so on. By systematically varying solvent conditions and temperature, we build up the phase diagram to illustrate the effects of polymer structure and temperature on the aggregate structures. At lower temperatures, we can observe large worm-like lamellar aggregates. Upon increasing the temperature, some block copolymers detach from the aggregate; this phenomenon is especially sensitive for the polymers with less arms. The aggregate structure will be quite disordered when the temperature is high. The incompatibility between the two parts in the star-like block copolymer also affects the self-assembled structures. We find that the worm-like structure is longer and narrower as the incompatibility between the two parts is stronger.  相似文献   

19.
Buchholz BA  Shi W  Barron AE 《Electrophoresis》2002,23(10):1398-1409
We review the variety of thermo-responsive and shear-responsive polymer solutions with "switchable" viscosities that have been proposed for application as DNA sequencing matrices for capillary and microfluidic chip electrophoresis. Generally, highly entangled polymer solutions of high-molar mass polymers are necessary for the attainment of long DNA sequencing read lengths (> 500 bases) with short analysis times (< 3 h). However, these entangled polymer matrices create practical difficulties for microchannel electrophoresis with their extremely high viscosities, necessitating high-pressure loading into capillaries or chips. Shear-responsive (shear-thinning) polymer matrices exhibit a rapid drop in viscosity as the applied shear force is increased, but still require a high initial pressure to initiate flow of the solution into a microchannel. Polymer matrices designed to have thermo-responsive properties display either a lowered (thermo-thinning) or raised (thermo-thickening) viscosity as the temperature of the solution is elevated. These properties are generally designed into the polymers by the incorporation of moderately hydrophobic groups in some part of the polymer structure, which either phase-separate or hydrophobically aggregate at higher temperatures. In their low-viscosity states, these matrices that allow rapid loading of capillary or chip microchannels under low applied pressure. The primary goal of work in this area is to design polymer matrices that exhibit this responsive behavior and hence easy microchannel loading, without a reduction in DNA separation performance compared to conventional matrices. While good progress has been made, thermo-responsive matrices have yet to offer sequencing performance as good as nonthermo-responsive networks. The challenge remains to accomplish this goal through the innovative design of novel polymer structures.  相似文献   

20.
The polymerization of elongated micellar structures offers a novel approach to the production of high-aspect-ratio, water-soluble amphiphilic nanorods. A cationic surfactant with a vinyl-containing counterion, cetyltrimethylammonium 4-vinylbenzoate, has been synthesized and polymerized to produce high-aspect-ratio nanoparticles which are insensitive to changes in solution conditions. Aggregates are polymerized over a range of initiator concentrations allowing for control of the product length. Small-angle neutron scattering and light scattering are used to characterize the dimensions of the polymerized aggregates, showing them to have a fixed radius of 2 nm and contour lengths varying from 96 to 340 nm. Proton NMR verifies the chemical structure and provides insight into the mobility of the aggregate components. Finally, gel permeation chromatography of the polymer extracted from the aggregates indicates that the polymerization reaction controls the aggregate dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号