首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract  Internal and external interfaces in solids exhibit completely different transport properties compared to the bulk. Transport parallel to grain or phase boundaries is usually strongly enhanced. Transport perpendicular to an interface is usually blocked, i.e., transport across an interface is often much slower. Due to the high density of interfaces in modern micro- and nanoscaled devices, a severe influence on the total transport properties can be expected. In contrast to diffusion in metal grain boundaries, transport phenomena in boundaries of ionic materials are still less understood. The specific transport properties along metal grain boundaries are explained by structural factors like packing densities or dislocation densities in the interface region. In most studies dealing with ionic materials, the interfacial transport properties are merely explained by the influence of space charge regions. In this study the influence of the interface structure on the interfacial transport properties of ionic materials is discussed in analogy to metallic materials. A qualitative model based on the density of misfit dislocations and on interfacial strain is introduced for (untilted and untwisted) phase boundaries. For experimental verification, the interfacial ionic conductivity of different multilayer systems consisting of stabilised ZrO2 and an insulating oxide is investigated as a funtion of structural mismatch. As predicted by the model, the interfacial conductivity increases when the lattice mismatch is increased. Graphical abstract  
Carsten KorteEmail:
  相似文献   

2.
Interfacial Na+ ion transport between polycrystalline beta alumina and propylene carbonate has been studied using a galvanostatic transient technique which separates interfacial overpotential from bulk resistivity effects. No interfacial polarization is detected during ion entry into beta alumina and exit from beta alumina across a dry interface from 30–1000 μA cm?2. Transport across an interface contaminated with adsorbed water follows Tafel-type i/E behavior with a transition coefficient (α) of 0.24 and exchange current (i0) of 3.0×10?6 A cm?2 at 23°C. Interfacial transport appears to take place through an intermediate state in which the mobile ion is adsorbed on the interface. Large increases in interfacial polarization occur at both dry and hydrated interfaces for ionic currents exceeding the rate of adsorption or desorption.  相似文献   

3.
金属锂电池是下一代高能量密度电池体系的代表。然而,高比能金属锂电池的发展受到界面诸多问题的限制,如:金属锂负极枝晶生长、隔膜界面兼容性、正极界面不稳定等,影响了金属锂电池的界面传质传荷过程,并导致金属锂界面环境恶化、电池的容量衰减、安全性能下降等问题。金属有机骨架(MOF)是一种具有稳定多孔结构的有机无机杂化材料,近年来在高比能金属锂电池领域受到广泛关注。其多孔结构与开放的金属位点(OMs)提供了优异的离子电导率,稳定的空间结构提供了较高的机械强度,多样的官能团与金属节点带来丰富的功能性。本文分析了金属锂电池界面的主要挑战,结合金属锂界面的成核模型,总结了MOF及其衍生材料在解决锂金属负极界面、隔膜界面、以及正负极界面稳定性相互作用等方面的研究进展和作用机理,为解决高比能金属锂电池界面失稳问题提供了解决途径,并展望了MOF基材料的设计与发展方向。  相似文献   

4.
Interfacial regions in metal matrix composites are important in controlling the mechanical and thermal properties of these materials. An ultrahigh modulus fibre‐reinforced magnesium alloy matrix composite has been studied, with particular attention paid to the interfacial and precipitate microstructures. Fibres were surface treated but uncoated prior to composite manufacture. Observations revealed that an interface consisting of polycrystalline magnesium oxide with occasional Mg17Al12 (β) precipitate particles predominates. Discontinuous β particles formed at fibre surfaces, and continuous spherical and lamellar β precipitates nucleated at grain boundaries and fibre surfaces. High dislocation densities exist at the interface indicating matrix‐yielding subsequent to manufacture and that a high mean residual compressive stress acts on fibres. The effect that the observed microstructural features has on composite properties and on interfacial bonding is discussed and compared to examples in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
For designing batteries with high-rate and long-life, electronic/ionic transport and reaction must be unified for metal oxide electrodes. However, it remains challenging for effectively integrating the whole substrate/active materials/electrolyte interfaces. Herein by taking Li ion battery as example, we propose a semiconductor-electrochemistry model by which a general but novel insight has been gained into interfacial effect in batteries. Different from those traditional viewpoints, this derived model lies across from physics to electrochemistry. A reaction driving force can be expressed in terms of Fermi energy change,based on the tradeoff between electronic and ionic concentration at the reaction interfacial region. Therefore, at thermodynamic-controlled interface I of substrate/electrode, increasing contact areas can afford higher activity for active materials. Whereas at kinetically-governed interface II of electrode/electrolyte or inside active materials, it is crucial to guarantee high-reaction Li ionic concentration, with which some sufficient reaction degrees can reach.  相似文献   

6.
Microscopic quasi-elastic laser scattering (muQELS) spectroscopy has been developed for analysis of interfacial phenomena at laminar multiphase microflow in a microchannel. Transport phenomena of a metal chelate through a water/toluene interface were measured, and transient adsorption of the chelate in the initial step of the transport was measured. A water/methanol miscible interface was also measured, and the interfacial free energy of a miscible interface was determined for the first time. The muQELS is expected to be very effective not only for physicochemical investigations of transport and mixing, but also for elemental process analysis of heterogeneous reactions.  相似文献   

7.
We studied chemical reactions between ultrathin metal films (Al, Cr, Fe, Mo) and single-crystal oxides (SrTiO3 (100), TiO2 (110)) with X-ray photoelectron spectroscopy (XPS). The work function of the metal and the electron density in the oxide strongly influence the reaction onset temperature (T(RO)), where metal oxidation is first observed, and the rate of metal oxidation at the metal/oxide interfaces. The Fermi levels of the two contacting phases affect both the space charges formed at the interfaces and the diffusion of ionic defects across the interfaces. These processes, which determine metal oxidation kinetics at relatively low temperatures, can be understood in the framework of the Cabrera-Mott theory. The results suggest that the interfacial reactivity is tunable by modifying the Fermi level (E(F)) of both contacting phases. This effect is of great technological importance for a variety of devices with heterophase boundaries.  相似文献   

8.
The modification of the liquid/liquid interface with solid phases is discussed in this article. Modified interfaces can be formed with molecular assemblies, but here attention is focussed on solid materials such as mesoscopic particles, or microporous and mesoporous membranes. Charge transfer across the modified liquid/liquid interface is considered in particular. The most obvious consequence of the introduction of such modifying components is their effect on the transport to, and the transfer of material across, the liquid/liquid interface, as measured voltammetrically for example. One particularly interesting reaction is interfacial metal deposition, which can also be studied under electrochemical control: the initial formation of metal nuclei at the interface transforms it from the bare, pristine state to a modified state with very different reactivity. Deposition at interfaces between liquids is compared and contrasted with the cases of metal deposition in bulk solution and conventional heterogeneous deposition on conducting solid surfaces. Comparison is also made with work on the assembly of pre-formed micron and nanometre scale solids at the liquid/liquid interface.  相似文献   

9.
Proton-conducting perovskites such as Y-doped BaZrO 3 (BYZ) are promising candidates as electrolytes for a proton ceramic fuel cell (PCFC) that might permit much lower temperatures (from 400 to 600 degrees C). However, these materials lead to relatively poor total conductivity ( approximately 10 (-4) S/cm) because of extremely high grain boundary resistance. In order to provide the basis for improving these materials, we developed the ReaxFF reactive force field to enable molecular dynamics (MD) simulations of proton diffusion in the bulk phase and across grain boundaries of BYZ. This allows us to elucidate the atomistic structural details underlying the origin of this poor grain boundary conductivity and how it is related to the orientation of the grains. The parameters in ReaxFF were based entirely on the results of quantum mechanics (QM) calculations for systems related to BYZ. We apply here the ReaxFF to describe the proton diffusion in crystalline BYZ and across grain boundaries in BYZ. The results are in excellent agreement with experiment, validating the use of ReaxFF for studying the transport properties of these membranes. Having atomistic structures for the grain boundaries from simulations that explain the overall effect of the grain boundaries on diffusion opens the door to in silico optimization of these materials. That is, we can now use theory and simulation to examine the effect of alloying on both the interfacial structures and on the overall diffusion. As an example, these calculations suggest that the reduced diffusion of protons across the grain boundary results from the increased average distances between oxygen atoms in the interface, which necessarily leads to larger barriers for proton hopping. Assuming that this is the critical issue in grain boundary diffusion, the performance of BYZ for multigranular systems might be improved using additives that would tend to precipitate to the grain boundary and which would tend to pull the oxygens atoms together. Possibilities might be to use a small amount of larger trivalent ions, such as La or Lu or of tetravalent ions such as Hf or Th. Since ReaxFF can also be used to describe the chemical processes on the anode and cathode and the migration of ions across the electrode-membrane interface, ReaxFF opens the door to the possibility of atomistic first principles predictions on models of a complete fuel cell.  相似文献   

10.
11.
We review current progress in the understanding of interfaces in bulk thermoelectric materials. Following a brief discussion of the mechanisms by which embedded interfaces can enhance the electronic and thermal transport properties, we focus on emerging routes to engineer the nanoscale grain and interfacial structures in bulk thermoelectric materials. We address in particular (i) control of crystallographic texture, (ii) reduction of grain size to nanocrystalline dimensions, and (iii) formation of nanocomposite structures. While these approaches are beginning to yield promising improvements in performance, continued progress will require an improved fundamental understanding of the mechanisms governing the formation, stability, and properties of thermoelectric interfaces.  相似文献   

12.
Lithium-sulfur (Li−S) batteries, possessing excellent theoretical capacities, low cost and nontoxicity, are one of the most promising energy storage battery systems. However, poor conductivity of elemental S and the “shuttle effect” of lithium polysulfides hinder the commercialization of Li−S batteries. These problems are closely related to the interface problems between the cathodes, separators/electrolytes and anodes. The review focuses on interface issues for advanced separators/electrolytes based on nanomaterials in Li−S batteries. In the liquid electrolyte systems, electrolytes/separators and electrodes system can be decorated by nano materials coating for separators and electrospinning nanofiber separators. And, interface of anodes and electrolytes/separators can be modified by nano surface coating, nano composite metal lithium and lithium nano alloy, while the interface between cathodes and electrolytes/separators is designed by nano metal sulfide, nanocarbon-based and other nano materials. In all solid-state electrolyte systems, the focus is to increase the ionic conductivity of the solid electrolytes and reduce the resistance in the cathode/polymer electrolyte and Li/electrolyte interfaces through using nanomaterials. The basic mechanism of these interface problems and the corresponding electrochemical performance are discussed. Based on the most critical factors of the interfaces, we provide some insights on nanomaterials in high-performance liquid or state Li−S batteries in the future.  相似文献   

13.
Metallic materials for application at high temperatures must form a slowly growing, dense oxide scale for their own protection. Up to about 1000°C, chromia-forming, at higher temperatures, alumina-forming Fe, Ni or Co based materials are used. In the present paper it is demonstrated how intact homogeneous scales on materials can be studied by AES sputter profiling and SNMS, but the main objective is to show phenomena at surfaces and interfaces which occur in complex atmospheres. In complex atmospheres, the formation of a protective scale is aggravated if several aggressive components of the gas atmosphere attack the free metal surface. This was demonstrated by AES for oxidizing and chlorinating atmospheres, in which chlorides and oxides grow simultaneously on the free metal surface. The chlorides are overgrown after some minutes by the stable oxide, but the formation of a dense, protective oxide scale is prevented. Similar effects have been observed by AES in oxidizing and nitriding atmospheres and also in oxidizing and sulfidizing atmospheres. The structure and the composition of the interface oxide/metal is decisive for the adherence of oxide scales. Stresses in the oxide scale can initiate detachment, diffusion processes in the alloy can lead to formation of voids and cavities beneath the oxide layer; both processes are favoured by segregation of sulfur from the alloy to the nascent metal surface as was shown by AES. For the investigation of the interface, this has to be laid bare by in-situ bending of the sample; this causes physical removal of the oxide scale. In addition to the surface of the oxide and the interface oxide/metal, grain boundaries of the alloys are also of interest; at these grain boundaries, dissolved non-metal atoms such as C, O, N, S ... can penetrate into the alloy. The grain boundaries can be analyzed by AES if the samples are fractured inside the UHV system. It can be shown, for example, that oxygen can penetrate into the grain boundaries of the intermetallic compounds NbAl3 and NiAl; this oxygen penetration leads to grain boundary oxidation or even disintegration of the material into fine oxidized metal particles. These examples should demonstrate that the application of surface analytical methods, especially of AES, can provide valuable information for improved understanding and control of the high temperature corrosion of metallic materials.  相似文献   

14.
Introduction of alloying elements often alters properties of materials. In the technologically significant multilayered superlattice coatings, interfaces are known to play a key role in the deformation mechanisms, especially in the phenomenon of interface‐induced superhardness at nanoscale. Here, we elucidate, by first‐principles calculations, atomic structure of TiN/VN interface and its relationship to adhesion upon introducing Cr, Mo, Ta, Y, Al, Nb, Zr, and Sc, the very commonly occurring alloying elements in the coating. We find that the elements Cr, Mo, Ta, Y weaken substantially interfacial adhesion, whereas the others modify adhesion only slightly. The bond length, charge transfer, and interactions between atoms at interface are found to be the key factors to understanding the origin of shift in properties in the coatings with the chemical alloying. Using several methods of analysis, we have clarified electronic mechanism behind the variation induced by alloying elements and determined the interfacial bonding nature to be mainly ionic with a certain degree of covalency. The theoretical calculations presented provide insight into the complex electronic properties of the TiN/VN interfaces with alloying elements. Our findings help enhance performances of the multilayered coatings for wide‐ranging applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Summary The physical and chemical properties of interfaces such as grain boundaries and phase boundaries are very important for the mechanical properties of materials, for the grain boundary corrosion and grain boundary diffusion processes.The cohesive energy of interfaces can be significantly influenced by the microchemistry. Phosphorus, tin and antimony segregated to the grain boundaries, reduce the fracture toughness and the yield strength of technical steels. The concentrations of these elements causing these effects are in the range of a few ppm.The analytical problem is the characterisation of the microchemistry of grain boundaries and to correlate this information with the material properties. Fractions of atomic monolayers can be identified with a high lateral resolution. However, the interfaces have to be opened by fracturing the samples under UHV-conditions in the spectrometer.  相似文献   

16.
Impedance spectroscopy was used to solve the Pt electrode interface with metabolically active perfused living heart. Three impedance spectra were observed: the Warburg impedance (ZW∞), a single high angle constant-phase-element, and a thin-film impedance (ZD). When characterized again after cyclic change of ionic strength (and hence conductivity κ) each interface had one of only two spectra, with exclusion of ZW∞. The in vivo interfacial impedance spectrum is thus neither single-valued nor stable in time. Because metal|living tissue interfaces are obligatory circuit elements in biosensors and electrodes in heart and brain, the multiple-valued and thin-film character of its impedance are significant.  相似文献   

17.
Much attention has been paid to barium zirconates because their high protonic conductivity and chemical stability are excellent properties for solid electrolytes. However, most studies have focused on highly doped materials such as 10 or 20 mol% Y-doped barium zirconates. In this study, the bulk and the grain boundary electrical properties of 1 mol% Y-doped barium zirconate are investigated as a function of temperature, water partial pressure, and oxygen partial pressure. At low temperatures and in wet atmospheres, the bulk of the barium zirconate predominantly conducts protonic defects, whereas, at high temperatures and in dry conditions, it is mixed oxygen ionic and electron-hole conducting. In the grain boundary, the protonic conductivity is a few orders of magnitude lower than the protonic conductivity in the bulk. In this study, possible causes for the low protonic conduction at the grain boundaries are considered.  相似文献   

18.

Abstract  

In this paper I summarize our recent investigations (Park and Kim, Phys Chem C 111:14903, 2007; Solid State Ionics 179:1329, 2008) on the origin of the grain-boundary resistance in a doped LaGaO3, a perovskite-structured solid electrolyte. The partial electronic and ionic resistances of the bulk and the grain boundaries, as well as the total resistance, in 1 mol% Sr-doped LaGaO3 were measured separately by means of a dc-polarization method and ac-impedance spectroscopy. Both of the partial resistances at the grain boundaries were greater than the bulk counterparts, indicating that the grain boundaries impede the ionic as well as the electronic transport in this material. The transference number of the partial electronic conductivity at the grain boundary was however greater than that in the bulk. This fact strongly suggests that both electronic and ionic charge carriers deplete at the grain boundaries to form the space-charge zones and that the grain-boundary cores in this material are positively charged. In light of the fact that the effective charge of the oxygen vacancy (+2) is greater than that of the electron hole (+1), the oxygen vacancies deplete more sharply in the space-charge zones compared to the electron holes such that the grain boundaries become more mixed conducting relative to the bulk. These observations verify that the electrical conduction across the grain-boundaries in 1 mol% Sr-doped LaGaO3 is governed by the space charge.  相似文献   

19.
Mechanical properties of nanocomposites usually surpass the mechanical properties of their micro-structured and single-crystalline counterparts. This is mainly due to an extremely high density of internal interfaces in nanocomposites like grain, crystallite and phase boundaries. When compared to diamond, carbides and borides, nitrides are of interest because of their high temperature oxidation resistance and compatibility with iron containing alloys. This tutorial review classifies the contributions of various internal interfaces to the hardness of the nanocomposites, and appreciates the outstanding role of partially coherent phase boundaries in the hardness enhancement. With selected examples of transition metal nitrides containing aluminium and silicon as well as of boron nitrides, it is explained how the nanocomposites with partially coherent phase boundaries and thus with enhanced hardness can be synthesised. As the possible ways of the formation of coherent phase boundaries, the local epitaxial growth of phases with limited mutual solubility, the production of supersaturated solid solutions followed by the segregation of elements during the spinodal decomposition and the incomplete phase transformation are discussed. The most important techniques, used for synthesis of nitride nanocomposites, like CVD, PVD, precursor-based methods, mechanical alloying and high-pressure-high-temperature synthesis are briefly reviewed. Besides, a short overview on hardness definitions and hardness measurements is included.  相似文献   

20.
Stabilization of emulsions by mixed polyelectrolyte/surfactant systems is a prominent example for the application in modern technologies. The formation of complexes between the polymers and the surfactants depends on the type of surfactant (ionic, non-ionic) and the mixing ratio. The surface activity (hydrophilic–lipophilic balance) of the resulting complexes is an important quantity for its efficiency in stabilizing emulsions. The interfacial adsorption properties observed at liquid/oil interfaces are more or less equivalent to those observed at the aqueous solution/air interface, however, the corresponding interfacial dilational and shear rheology parameters differ quite significantly. The interfacial properties are directly linked to bulk properties, which support the picture for the complex formation of polyelectrolyte/surfactant mixtures, which is the result of electrostatic and hydrophobic interactions. For long alkyl chain surfactants the interfacial behavior is strongly influenced by hydrophobic interactions while the complex formation with short chain surfactants is mainly governed by electrostatic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号