首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
随着糖组学的发展,研究表明某些疾病如肿瘤等的发生伴随着体内糖蛋白表面糖链结构的变化,而糖链结构的形成与修饰经过糖基转移酶、糖苷酶和磺基转移酶的参与.本研究从Genebank等数据库中选取人类糖基转移酶基因127条、糖苷酶基因34条和磺基转移酶34条以及管家基因10条.通过对每个基因的mRNA序列进行探针设计,制备出一款糖类相关基因芯片,用于研究糖类相关基因的表达谱,旨在揭示疾病发生与糖类相关基因表达变化的关联性.制备的芯片应用于人肝癌细胞系SMMC-7721与正常肝细胞系Chang’s liver的研究,筛选出差异表达的基因34个,其中上调基因19个、下调基因15个.通过对2个上调基因和2个下调基因进行Realtime-PCR验证,得到了一致的实验结果.  相似文献   

2.
《Comptes Rendus Chimie》2003,6(2):259-264
Vinyl or amino-benzene sulfonates (VBS and ABS) are polymerised in situ after a soft thermal treatment (T = 473 K) between the sheets of layered double hydroxides (LDH). The reaction of polymerisation is studied either by 13C CP- MAS NMR or ESR spectroscopies. The resonance peak associated to the vinyl group disappears from the VBS/LDH hybrid material, and conversely, a narrow signal, characteristic of free radicals, is observed for the ABS/LDH system. To cite this article: E.M. Moujahid, C. R. Chimie 6 (2003).  相似文献   

3.
By combining microfiber spinning techniques with aqueous two phase system (ATPS), a rapid and simple strategy to fabricate water-in-water (w/w) droplets encapsulated in microfibers was proposed for the first time. Hydrophilic environment in hydrogel and the fiber format facilitates higher biocompatibility, convenient manipulation of the droplets and recycling of the contents inside droplets, which would have promising development in biological, pharmacological and environmental fields.  相似文献   

4.
Parameters influencing the grafting of a typical charge transfer (CT) complex, maleic anhydride /triethylene glycol divinyl ether, to representative substrates, cellulose and polypropylene, initiated by UV and ionising radiation have been investigated. The variables studied include effect of solvent, role of donor involving the type of ether and the nature of the acceptor including the use of common monomers like methyl methacrylate. A novel application of this CT grafting work is reported involving hydrogel formation with subsequent controlled release of incorporated reagent.  相似文献   

5.
An array of the colloidal photonic crystals was directly fabricated using an ink-jet printing. The colloidal ink droplets containing the monodispersed polystyrene latex particles were selectively deposited on a hydrophobic surface. Solvent evaporation from each ink droplet leads to a formation of microdome-shaped colloidal assembles of close-packed structures. Microspectroscopic analysis has confirmed that the individual assembly serves as a photonic crystal and its optical properties can be correlated with the microstructural features. Unlike other techniques of patterned growth of colloidal photonic crystal, the substrate does not need to be patterned first and no template is needed in the direct writing by the ink-jet printing. Using our strategy, we have rapidly produced the colloidal photonic crystal microarrays composed of different-sized spheres addressably patterned on the same substrate.  相似文献   

6.
In this article a new method for the photolithographical deposition of temperature-sensitive hydrogels is presented. The method can be used in conjunction with standard 365 nm UV-photolithography to accurately dimension and position temperature-sensitive hydrogel microactuators in a highly parallel fashion. A number of characteristics of the hydrogels were investigated. These include: the photolithographical reproduction quality, the effect of the crosslinking density in the hydrogels on their swelling behavior, the swelling hysteresis behavior, the effect of dimensional constraints on the swelling of the hydrogels and the effect of copolymerization with an ionizable comonomer on the temperature behavior of the hydrogels. The method presents a considerable improvement in the microfabrication of temperature-sensitive hydrogel microactuators and has potential for the mass-fabrication of these interesting microactuators.  相似文献   

7.
A new methodology for protein microarray fabrication is proposed based on the ablation of polymer film using laser at 157 nm (F2). The polymer has been selected among others with the criterion of negligible protein adsorption. Improved results have been obtained by pretreatment of the polymer surface with an inert protein. The use of 157-nm laser radiation allowed very good depth control during the polymeric layer ablation process. In addition the importance of laser ablation at 157 nm is based on the fact that irradiated surfaces indicate limited chemical change due to the fact that laser ablation at 157 nm is only photochemical, thus avoiding excessive surface heating and damage. Results of protein microarray fabrication are presented to illustrate the viability of the proposed method.  相似文献   

8.
N-terminally Fmoc-protected dipeptide, Fmoc-Val-Asp-OH, forms a transparent, stable hydrogel with a minimum gelation concentration of 0.2% w/v. The gelation property of the hydrogel was investigated by using methods such as transmission electron microscopy, field-emission scanning electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy. The silver-ion-encapsulating hydrogel can efficiently and spontaneously produce fluorescent silver nanoclusters under sunlight at physiological pH (7.46) by using a green chemistry approach. Interestingly, in the absence of any conventional reducing agent but in the presence of sunlight, silver ions were reduced by the carboxylate group of a gelator peptide that contains an aspartic acid residue. These clusters were investigated by using UV/Vis spectroscopy, photoluminescence spectroscopy, high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) studies. Mass spectrometric analysis shows the presence of a few atoms in nanoclusters containing only Ag(2). The reported fluorescent Ag nanoclusters show excellent optical properties, including a very narrow emission profile and large Stokes shift (>100 nm). The reported fluorescent Ag nanoclusters within hydrogel are very stable even after 6 months storage in the dark at 4 °C. The as-prepared hydrogel-nanocluster conjugate could have applications in antibacterial preparations, bioimaging and other purposes.  相似文献   

9.
Kim LN  Choi SE  Kim J  Kim H  Kwon S 《Lab on a chip》2011,11(1):48-51
We present a simple and high-throughput method for fabricating free-floating hydrogel cell microcarriers using single exposure UV patterning. We also demonstrate magnetic manipulation of the free-floating cell microcarriers using a magnetic nanoparticle-embedded structure for an active agitation and a solution exchange.  相似文献   

10.
Currently there are over 1,000,000 human expressed sequence tag (EST) sequences available on the public database, representing perhaps 50-90% of all human genes. The cDNA microarray technique is a recently developed tool that exploits this wealth of information for the analysis of gene expression. In this method, DNA probes representing cDNA clones are arrayed onto a glass slide and interrogated with fluorescently labeled cDNA targets. The power of the technology is the ability to perform a genome-wide expression profile of thousands of genes in one experiment. In our review we describe the principles of the microarray technology as applied to cancer research, summarize the literature on its use so far, and speculate on the future application of this powerful technique.  相似文献   

11.
Chen G  Li J  Qu S  Chen D  Yang P 《Journal of chromatography. A》2005,1094(1-2):138-147
A novel method for bonding poly(methyl methacrylate) (PMMA) electrophoresis microchips at the temperature below the glass transition temperature of PMMA based on in situ polymerization has been demonstrated. Methyl methacrylate (MMA) containing initiators was allowed to prepolymerize in an 85 degrees C water bath for 8 min and 15 min to produce a bonding solution and a dense molding solution, respectively. The channel plate of the PMMA microchip was fabricated by the UV-initiated polymerization of the molding solution between a nickel template and a PMMA plate at room temperature. Prior to bonding, the blank cover was coated with a thin layer of the bonding solution and was bonded to the channel plate at 95 degrees C for 20 min under the pressure of binder clips. The attractive performance of the PMMA chips bonded by the new approach has been demonstrated by separating and detecting dopamine, catechol, three cations, and three organic acids in connection with end-column amperometric detection and contactless conductivity detection.  相似文献   

12.
This work investigates the feasibility of implementing conductivity measurements for the purpose of the on-line monitoring of particle generation by following the evolution of free surfactant concentration during SDS/styrene emulsion polymerisations. The conductivity and temperature were measured on-line during the reactant addition and reaction stages of a number of batch emulsion polymerisations. Samples were collected for off-line analysis of particle size and conversion. Observation of the evolution of the conductivity enabled us to measure the effect of surfactant and monomer addition. The maximum size of the monomer droplets was calculated from the decrease in conductivity that represented the adsorption of surfactant molecules onto the droplet surface. The division of SDS between the particle interface and the aqueous phase was also determined giving an indication of the particle stability.  相似文献   

13.
This paper reports on the surface modification of plastic microfluidic channels to prepare different biomolecule micropatterns using ultraviolet (UV) photografting methods. The linkage chemistry is based upon UV photopolymerization of acryl monomers to generate thin films (0.01-6 microm) chemically linked to the organic backbone of the plastic surface. The commodity thermoplastic, cyclic olefin copolymer (COC) was selected to build microfluidic chips because of its significant UV transparency and easiness for microfabrication by molding techniques. Once the polyacrylic films were grafted on the COC surface using photomasks, micropatterns of proteins, DNA, and biotinlated conjugates were readily obtained by surface chemical reactions in one or two subsequent steps. The thickness of the photografted films can be tuned from several nanometers up to several micrometers, depending on the reaction conditions. The micropatterned films can be prepared inside the microfluidic channel (on-chip) or on open COC surfaces (off-chip) with densities of functional groups about 10(-7) mol/cm2. Characterization of these films was performed by attenuated-total-reflectance IR spectroscopy, fluorescence microscopy, profilometry, atomic force microscopy, and electrokinetic methods.  相似文献   

14.
The successful integration of living cells into synthetic devices requires precise control over cell patterning. Here we describe a versatile platform that can accomplish this goal through DNA hybridization. Living cells functionalized with exogenous cell-surface DNA strands bind to cognate sequences of DNA printed on glass slides. Attachment via these "cell-adhesion barcodes" is rapid and specific, with close-packed arrays of cells forming within minutes. The biophysical properties of the system are characterized, and the technique is used to form complex cellular patterns with single-cell line widths and self-assembled cellular microarrays. Key advantages of DNA-directed cell binding include the ability to immobilize both adherent and non-adherent cells, to capture cells selectively from a mixed population, to tune the binding properties of the cells, and to reuse substrates prepared with widely available DNA printing technologies.  相似文献   

15.
Transition metal mediated living radical polymerisation of butyl methacrylate has been demonstrated with a copper(I) halide N-alkyl-2-pyridylmethanimine ligands based catalyst. Optimum conditions were found to be with copper(I) chloride and N-octyl-2-pyridylmethanimine catalyst at 65 °C where conversions of 85% were achieved with polymers of Mn = 8900 g mol−1 (theoretical = 8400 g mol−1) and PDI = 1.23. Both non-ionic and ionic surfactants were employed which were also made by living radical polymerisation. The non-ionic surfactant was a block copolymer of PMMA from a polyethyleneglycol macroinitiator (total Mn = 7600 g mol−1, PDI = 1.20) and the ionic surfactant PDMEAMA-PMMA (total Mn = 8000 g mol−1, PDI = 1.21) with the PDMEAMA block quaternized with MeI (13.8%, 28.4%, 47.7% and 100%). A range of ligands were employed in the suspension polymerisation by varying the alkyl group on the ligand increasing the hydrophobicity (alkyl = propyl (PrMI), pentyl (PMI), octyl (OMI), dodecyl (DMI) and octadecyl (ODMI)). The more hydrophobic ligands were found to be more effective due to lower partitioning into the aqueous phase. Block copolymers of P(EMA)-P(BMA) and P(MMA)-P(BMA) were prepared by first preparing macroinitiators via living radical polymerisation (Mn = 1600 g mol−1 (PDI = 1.23) for P(EMA) and Mn = 1500 g mol−1 (PDI = 1.22) for P(MMA)) and using them for initiation of BMA in suspension polymerisation. Block copolymers had Mn between 12,800 and 13,700 g mol−1 with PDI between 1.33 and 1.54. Block copolymer growth showed excellent linear first order kinetics wrt monomer and demonstrated characteristics expected of a living radical polymerisation. Particle sizes were measured by SEM and DLS with good agreement (1.4-2.8 μm) and SEM showed spherical particles were formed.  相似文献   

16.
To develop new matrices for the entrapment and sustained release of bioactive lysozyme, a series of supramolecular hydrogels based on α-cyclodextrin (α-CD) and water-soluble poly(ε-caprolactone)-poly(ethylene glycol) block copolymer (PCL-b-PEG) were prepared in the presence of chicken egg lysozyme. Different from commonly used polymeric microspheres and chemically crosslinked hydrogels for lysozyme encapsulation, such hydrogel matrices could be formed under mild conditions without high temperature and the use of chemical emulsifiers or crosslinkers. Their gelation rate, mechanical strength and shear viscosity as well as the release behavior for the encapsulated lysozyme could be tuned easily by the change of α-CD or PCL-b-PEG amount. For the encapsulated lysozyme, its conformation and biological activity could be well maintained when compared to native lysozyme. For the resultant supramolecular hydrogels, they were also confirmed to have a good biocompatibility by MTT assay using mice skin fibroblast (L929).  相似文献   

17.
Troïani D  Dion JR  Burns DH 《Talanta》2011,83(5):215-1375
Analyte quantification in samples with extensive matrix effects can be challenging using conventional analytical techniques. Ultrasound has been shown to easily penetrate samples that can be difficult to measure optically or electrochemically, though it provides little chemical information. Recent ultrasound contrast agents provide highly localized contrast within a sample based on concentration. We have developed a general approach for creating smart biosensors based on molecularly imprinted hydrogel polymers that recognize and bind a target analyte, changing ultrasonic properties with analyte concentration. Multilinear analyte calibration in hydrogel solutions provided quantification of the chosen analyte, theophylline, from 8.4 μM to 6.1 mM with a high degree of linearity (correlation coefficient exceeding 0.99). Simultaneous quantification of both theophylline and of an interfering species, caffeine, was also carried out, providing an avenue for simultaneous analyte analysis with one smart biosensor that can be dispersed and remotely detected.  相似文献   

18.
In this Article, large and uniform Ag nanoparticle-containing hybrid hydrogels were prepared by in situ reduction of Ag ions in cross-linked tapioca dialdehyde starch (DAS)-chitosan hydrogels. In the hybrid hydrogels, chitosan was chosen as a macromolecular cross-linker because of its abundant source and good biocompatibility. The hybrid hydrogel showed good water-swelling properties, which could be controlled by varying the ratio of chitosan to tapioca DAS in the hydrogel. The reductive aldehyde groups in the cross-linked hydrogels could be used to reduce Ag ions to Ag nanoparticles without any additional chemical reductants. Interestingly, by controlling the reduction conditions such as the tapioca DAS concentration, aqueous AgNO(3) concentration, reaction time, and aqueous ammonium concentration, Ag nanoparticles with different sizes and morphologies were obtained. Because of their biocompatibility, degradable constituents, mild reaction conditions, and controlled preparation of Ag nanoparticles, these tapioca DAS-chitosan/Ag nanoparticle hybrid hydrogels show promise as functional hydrogels.  相似文献   

19.
We present a simple in situ method to fabricate silver (Ag) nanoparticle arrays in a layer-by-layer (LBL) assembled hyaluronan (HA)/poly(dimethyldiallylammonium chloride) (PDDA) multilayer structure, in which the LBL multilayered film is constructed by electrostatic attraction between positively charged PDDA and negatively charged HA, followed by in situ synthesis of embedded Ag nanoparticle arrays in the LBL "nanoreactors," where the abundant negatively charged carboxyl groups of HA bind and further reduce Ag(+) ions under UV-irradiating. The arrays morphology is highly dependent on the number of bilayers, and the surface density of nanoparticles in the arrays can be simply tailored by the number of irradiation/drying cycles during fabrication. The embedded Ag nanoparticle arrays possess good stability for localized surface plasmon resonance (SPR) absorption spectrum-based biosensors and superior antimicrobial capability. These render great potentials for the films in both biosensing and antimicrobial applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号