首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
路畅 《科技信息》2007,(32):91-91,128
本文针对传统的基于HMM模型的语音识别效率较低的问题,提出了一种将隐马尔可夫模型(HMM)与自组织特征映射神经网络(SOFMNN)相结合的方法。  相似文献   

2.
连续型隐马尔可夫模型(HMM)参数与语音识别   总被引:1,自引:0,他引:1  
提出了一种新的连续型隐马尔可夫模型(HMM)的概率密度函数,并导出了一系列的参数寻优迭代公式,与常用的概率密度函数相比,它的运算量较小,且不易产生计算时的上溢与溢问题,把它用于HMM语音识别,效果较好。  相似文献   

3.
提出了一种改进隐马尔可夫模型(HMM)的方法,即把遗传算法应用到Baum-Welch算法B值的优化当中,解决了Baum-Welch算法容易陷入局部最优解的缺点,得到了全局最优解,提高了语音识别系统的识别率。  相似文献   

4.
噪声环境中基于HMM模型的语音信号端点检测方法   总被引:8,自引:1,他引:8  
在噪声环境下如何提高语音信号端点检测的准确性是自动语音识别(ASR)研究中的一个重要课题.常用的基于短时能量的端点检测方法对于能量较低的音节或在信噪比较低的环境下,检测性能不够理想.讨论了一种基于HMM模型的语音信号端点检测方法.先用训练的方法生成背景噪声和废料的模型,再用Viterbi解码算法对待测信号进行处理,并给出了具体的实现方法.实验测试结果表明,基于HMM的端点检测方法的检测性能接近于人工检测,方法是有效的.  相似文献   

5.
语音识别中隐马尔可夫模型状态数的研究   总被引:2,自引:0,他引:2  
该文从信息论的观点出发,对语音信号的隐马尔可夫模型(HMM)的状态数进行研究,建立了HMM的状态数研究的简化模型,指出HMM的信息熵是由语音信号的固有熵和附加熵组成。随状态数增加,信息熵趋向固有熵。最后,在综合考虑信息熵和运算量两方面因素情况下,得出了状态数宜在6 ̄8之间的结论。  相似文献   

6.
基于BPNN/HMM神经网络的声学模型研究   总被引:1,自引:0,他引:1  
研制了一种基于BP神经网络和隐马尔可夫模型(HMM)的混合声学模型,BP神经网络的主要功能是把失真语音特征矢量转换成纯净语音特征矢量,而删则对转换后的纯净语音特征矢量进行分类,从模型级补偿的方面来提高语音识别系统的鲁棒性.讨论了一种基于线性预测的MKCC语音特征提取方法,该方法把提取出的失真语音特征矢量作为神经网络的输入,从而实现了特征参数级去噪处理的目的.  相似文献   

7.
本文针对线性模型在语音识别中的不足,进行了隐马尔可夫模型(HMM)在语音单字识别中的研究,主要对观察输出概率求解、最佳状态序列寻找、参数估计和模型参数的选择进行了探讨.  相似文献   

8.
提出一种结合SOFM失真的HMM语音识别方法,它直接将SOFM失真测度与左右型离散HMM相结合综合利用SOFM失真五HMM状态输出概率作为HMM的匹配失真测度。该方法既可以看作为基于VQ失真语音识别方法的推广,又可以看作为半连续HMM的一种特例。实验结果证明它具有良好的效果。  相似文献   

9.
本文在统一的框架下描述了隐马尔柯夫模型(HMM)用于语音识别时的各种形式,包括离散HMM、连续混合密度HMM、半连续HMM和最大分量连续HMM等,指出各种模型均是统一形式下的导出形式。文中就离散HMM、连续混合密度HMM和最大分量连续HMM在非特定人全音节汉语语音识别中的应用,从识别率和复杂度两方面进行了性能比较。为提高最大分量连续HMM的识别性能;提出了一种修正的训练算法。  相似文献   

10.
传统的隐马尔可夫模型的缺点在于不能很好地描述语音信号的动态特性。某些改进算法状态持续时间进行修正,但是也削弱了对实时信号长度变化的适应性。作者在传统的隐马尔夫模型的基础上,通过在引入状态持续时间时,将其归一化。并观察序列长度对它的影响,使之能较好地描述语音信号的动态特性,同时也能较好地自适应描述实时语音信号的长度变化。  相似文献   

11.
针对隐马尔科夫模型用于语音识别时传统的参数初始化方法(随机分布之值、K均值算法)可能导致模型参数收敛于局部最优而非全局最优的问题,提出了先按最大距离选择初值中心,再按最小距离将原始数据分割成小类后去除类内干扰点,使类内相似性更强的K均值方法.实验结果表明,改进后的方法与传统方法相比,更好地平滑逼近语音特征,提高语音的识别率.  相似文献   

12.
IntroductionIn recentyears,speech recognition has made greatprogress.Commercial systems such as Via Voice( IBM Company) and Naturally Speaking 1 .0( Dragon System Company ) lead the field.Although the recognition ratio has greatlyimproved,many issues still need further research,such as,real- time in processing,systemcomplexity[4 6] ,very large scale integrated circuit( VLSI) implementation,etc.Among these issues,the implementation in VLSI is the most criticalchallenge for wide use of s…  相似文献   

13.
孙峰 《科学技术与工程》2011,11(9):2021-2024,2033
输入语音信号中声音的特征提取和分类识别可以通过多层前馈神经网络大量学习实现,但基于误差反向传播的前馈神经网络(BP神经网络)标准算法收敛速度慢,在训练中效率不高。采用一种快速稳定的Levenberg-Marquardt算法进行语音识别,通过对语音信号的预处理、特征提取和网络结果优化,建立了网络训练样本集,用MATLAB进行了仿真,仿真结果表明,该算法优于传统的BP算法,具有更好的收敛性。  相似文献   

14.
通过分析基于隐马尔可夫模型(HMM)语音识别的原理,针对模板提取过程中语音信号的基音频率差别增大而出现的语音识别率下降的问题,提出分类识别的方法,通过采用基音周期(Pitch)判决方法,将特征相近的帧合并,并计算基音频率的MEL频率倒谱系数,采用隐马尔可夫模型(HMM)进行语音识别,最终通过仿真实验验证分类识别方法对语音识别率提高的影响,得出此方法的适用环境和范围.  相似文献   

15.
利用隐马尔可夫模型训练中不同结构的DNA序列的L值分布范围不同的特点,对传统多类投票模型进行改进,提出一种优于传统算法的快速训练算法,该算法只需训练出一类隐马尔可夫模型参数.对DNA内含子和外显子序列进行识别,平均识别率达到了90.8%.与支持向量机相比,隐马尔可夫模型在解决多分类问题方面具有优势,不但计算时间少,而且识别率高.  相似文献   

16.
基于混沌神经网络的语音识别方法   总被引:4,自引:0,他引:4  
基于语音信号的时变特性,研究了神经网络语音识别的方法.把混沌特性引入到神经元,构造了一种新的多层混沌神经网络结构,同时推导了相应的学习算法.把这种混沌神经网络用于语音识别,并与常用的神经网络语音识别方法作了比较.实验结果表明,混沌神经网络方法的平均识别率要高于同等条件下常用神经网络方法的识别率.  相似文献   

17.
隐马尔可夫模型是研究发音过程、神经生理学与生物遗传等问题的有力工具,并且在弱相依变量的建模上得到了广泛应用.本文假定隐藏的马氏链为非齐次的,从而导出了该模型泛函序列{fn(X0,...,Xn,Yn)}的强极限定理.  相似文献   

18.
介绍了径向基函数神经网络的原理、训练算法,并建立了RBF神经网络的语音情感识别的模型。在实验中比较了BP神经网络与RBF神经网络分别用于语音情感识别识别率,RBF神经网络的平均识别率高于BP神经网络3%。结果表明,基于RBF神经网络的语音情感识别方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号