首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Magdy A. Ibrahim 《Tetrahedron》2009,65(36):7687-2859
4-Hydroxycoumarin-3-carboxaldehyde (5) was obtained from chromone-3-carboxaldehyde (1) via chromone-3-carboxamide (2) and 3-aminomethylene-2H-chroman-2,4-dione (3). 3-Alkylaminomethylenechroman-2,4-diones (7,8) were obtained from the reaction of primary aliphatic amines with chromone-3-carboxamide (2). Treatment of chromone-3-carboxamide with sodium methoxide gives 3-(2-hydroxybenzoyl)-2H-chromeno[2,3-b]pyridine-2,5(1H)-dione (9).  相似文献   

2.
The synthesis of substituted 2-aroyl-3-methylchromen-4-one from isovanillin is described. O-Allylphenol (2) prepared from isovanillin (1) was allowed to react with various α-bromoacetophenone (3) to produce 2-(2-allyl-3,4-dimethoxy)phenoxy-1-aroylethanones (4). The resultant 4 were treated with 2 equiv of potassium tert-butoxide to afford the substituted 2-aroyl-3-methylchromans (5) through an isomerization of an allylic double bond and a carbanion-olefin intramolecular 6-endo-trig cyclization reaction. Subsequently, resultant 5 were oxidized with DDQ to yield the title compound 6, in good over-all yields.  相似文献   

3.
Syntheses of rac/meso-{PhP(3-t-Bu-C5H3)2}Zr{Me3SiN(CH2)3NSiMe3} (rac-3/meso-3) and rac/meso-{PhP(3-t-Bu-C5H3)2}Zr{PhN(CH2)3NPh} (rac-4/meso-4) were achieved by metallation of K2[PhP(3-t-Bu-C5H3)2] · 1.3 THF (2) with Zr{RN(CH2)3NR}Cl2(THF)2 (where R = SiMe3 or Ph, respectively) using ethereal solvent. These isomeric pairs were characterized by 1H, 13C{1H}, and 31P{1H} NMR spectroscopy; rac-3 and rac-4 were also examined via single crystal X-ray crystallography. The structures of rac-3 and rac-4 are notable in the tendency of the cyclopentadienyl rings towards η3 coordination. While isolated samples of rac-3/meso-3 and rac-4/meso-4 slowly isomerize in tetrahydrofuran-d8 to equilibrium ratios, the isomerization rate for 3 is more than 15-fold greater than that for 4. In addition, equilibrium ratios are rapidly reached when isolated samples of rac-3/meso-3 and rac-4/meso-4 are exposed to tetrabutylammonium chloride in tetrahydrofuran-d8 solvent. We propose that a nucleophile (either chloride or the phosphine interannular linker) brings about dissociation of one cyclopentadienyl ring, thus promoting the rac/meso isomerization mechanism.  相似文献   

4.
(5Z,5′Z)-3,3′-(1,4-Phenylenebis(methylene)-bis-(5-arylidene-2-thioxothiazolidin-4-one) derivatives (5a-r) have been synthesized by the condensation reaction of 3,3′-(1,4- or 1,3-phenylenebis(methylene))bis(2-thioxothiazolidin-4-ones) (3a,b) with suitably substituted aldehydes (4a-f) or 2-(1H-indol-3-yl)2-oxoacetaldehydes (8a-c) under microwave conditions. The bis(2-thioxothiazolidin-4-ones) were prepared from the corresponding primary alkyl amines (1a,b) and di-(carboxymethyl)-trithiocarbonyl (2). The 2-(1H-indol-3-yl)-2-oxoacetaldehydes (8a-c) were synthesized from the corresponding acid chlorides (7a-c) using HSnBu3.  相似文献   

5.
Lewis acid catalyzed Fries rearrangement of 2-fluorophenyl acetate (3) was performed on kg scale. The ortho5 and para4 isomers obtained were separated in an industrially feasible way. Compound 4 was then converted into fluorinated building block 3-fluoro-4-methoxybenzoyl chloride (1) while compound 5 was converted into 1,2-diethoxy-3-fluorobenzene (2) in high yields.  相似文献   

6.
(S)-4-Methyl-3,6-dihydro-2H-pyran-2-carbaldehyde (3), the common intermediate in the syntheses of the C17-C27 subunit of laulimalide (4) and (+)-faranal (5), the trail pheromone of the pharaoh ant, Monomorium pharaonis, were obtained via transformation of methyl 3-bromomethyl-3-butenoate (1) into allylstannane 2 and subsequent allylation of (benzyloxy)acetaldehyde (6) in accordance with the Keck procedure as the key steps.  相似文献   

7.
[3]Ferrocenophane (3a) reacts in a Gomberg reaction with diazotized p-nitroaniline to give a mixture of mono- and di-substituted products. The isomeric pairs of 3- and 2-(p-nitrophenyl)[3]ferrocenophanes (4 and 5), as well as 3,4′- and 3,4-bis-(p-nitrophenyl)[3]ferrocenophanes (6 and 7) were separated from the mixture by column chromatography on Al2O3 and characterized by means of mass, IR, UV, 1H-NMR spectroscopy, and by X-ray analysis (4 and 6). PM3/tm and density functional theoretical calculations on ferrocene (1) and ferrocenophane derivatives are reported. A refined X-ray structure determination of [3]ferrocenophane (3a) is given.  相似文献   

8.
Giuseppe Faita 《Tetrahedron》2010,66(16):3024-5854
The asymmetric Friedel-Crafts reaction between methyl (E)-2-oxo-4-aryl-3-butenoates (1a-c) and activated benzenes (2a-d) has been efficiently catalyzed by the ScIII triflate complex of (4′S,5′S)-2,6-bis[4′-(triisopropylsilyl) oxymethyl-5′-phenyl-1′,3′-oxazolin-2′-yl]pyridine (pybox 3). The 4,4-diaryl-2-oxo-butyric acid methyl esters (4) are usually formed in good yields and the enantioselectivity is up to 99% ee. The sense of the stereoinduction can be rationalized with the same octahedral complex (10) between 1, pybox 3 and Sc triflate already proposed for other reactions involving pyruvates, and catalyzed by the same complex.  相似文献   

9.
3-Fluoro-3-buten-2-one (2) is readily prepared from 1-fluoro-1-chloro-2-methoxy-2-methylcyclopropane (1) in 82% yield by heating the cyclopropane in aqueous quinoline solution. Ketone 2 reacts with aryl iodides (3) in a Heck reaction catalyzed by Pd(OAc)2 to give Z-3-fluorobenzalacetones (4) in 36-86% yield.  相似文献   

10.
(Z)-5-(2-(1H-Indol-3-yl)-2-oxoethylidene)-3-phenyl-2-thioxothiazolidin-4-one (7a-q) derivatives have been synthesized by the condensation reaction of 3-phenyl-2-thioxothiazolidin-4-ones (3a-h) with suitably substituted 2-(1H-indol-3-yl)-2-oxoacetaldehyde (6a-d) under microwave condition. The thioxothiazolidine-4-ones were prepared from the corresponding aromatic amines (1a-e) and di-(carboxymethyl)-trithiocarbonyl (2). The aldehydes (6a-h) were synthesized from the corresponding acid chlorides (5a-d) using HSnBu3.  相似文献   

11.
Substituted 3-formylchromones react with 2-phenyl-4-dimethylamino-1-thia-3-azabuta-1,3-diene (4) or thio-benzamide (7) by heating their toluene solution in a sealed tube to give novel substituted 3-(5-phenyl-3H-[1,2,4]dithiazol-3-yl)chromen-4-ones (6a-e) in high yields.  相似文献   

12.
Two series of 2-(N-aryl-2-oxo-2-arylethanehydrazonoyl)-6-methyl-4(3H)-pyrimidinones 11 (12) were prepared by coupling of diazotized anilines with 2-(aroylmethylene)-1,2-dihydro-6-methyl-4(3H)-pyrimidinones 2 (3). The spectral data of such compounds together with their 3-methyl analogs 13 (14) indicated that they exist predominantly in the hydrazone tautomeric form.  相似文献   

13.
To synthesize (3′R,5′S)-3′-hydroxycotinine [(+)-1], the main metabolite of nicotine (2), cycloaddition of C-(3-pyridyl)nitrones 3a, 3c, and 15 with (2R)- and (2S)-N-(acryloyl)bornane-10,2-sultam [(2R)- and (2S)-8] was examined. Among them, l-gulose-derived nitrone 15 underwent stereoselective cycloaddition with (2S)-8 to afford cycloadduct 16, which was elaborated to (+)-1.  相似文献   

14.
The direct cyclopalladation of 3-methoxyimino-2-(4-chlorophenyl)-3H-indole (1a) and 3-methoxyimino-2-phenyl-3H-indole (1b) results in the regioselective activation of the ortho σ[C(sp2, phenyl)-H] bond affording (μ-OAc)2[Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}]2 (2) {R = Cl (2a) or H (2b)} that contain a central “Pd(μ-OAc)2Pd” core. Compounds 2a and 2b reacted with triphenylphosphine (in a molar ratio PPh3:2 = 2) giving [Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}(OAc)(PPh3)] (3) {R = Cl (3a) or H (3b)}. Treatment of 2a or 2b with a slight excess of LiCl in acetone produced the metathesis of the bridging ligands and the formation of (μ-Cl)2[Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}]2 (4) {R = Cl (4a) or H (4b)} with a central “Pd(μ-Cl)2Pd” moiety. The reactions of 4a or 4b with deuterated pyridine (py-d5) or triphenylphosphine gave the monomeric derivatives [Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}Cl(L)] with R = Cl or H and L = py-d5 (5) or PPh3 (6). The crystal structure of 6b·1/2CH2Cl2 confirmed the mode of binding of the ligand, the nature of the metallated carbon atom and a trans-arrangement of the phosphine ligand and the heterocyclic nitrogen. Theoretical calculations on the free ligands are also reported and have allowed the rationalization of the regioselectivity of the cyclopalladation process.  相似文献   

15.
The reversible intramolecular [3,3]-sigmatropic rearrangement between 1-(3-azido-3,5-dideoxy-β-d-threo-pent-4-enofuranosyl)uracil (3) and 1-(5-azido-3,5-dideoxy-β-d-glycero-pent-4-enofuranosyl)uracil (4) and irreversible radical rearrangement of 1-(3,5-dideoxy-3-phenylthio-β-d-threo-pent-4-enofuranosyl)uracil (5) and 1-[3,5-dideoxy-3-(4-tolyl)thio-β-d-threo-pent-4-enofuranosyl]uracil (7) into 1-(3,5-dideoxy-5-phenylthio-β-l-glycero-pent-4-enofuranosyl)uracil (6) and 1-[3,5-dideoxy-5-(4-tolyl)thio-β-l-glycero-pent-3-enofuranosyl]uracil (8) were attained at room temperature.  相似文献   

16.
New β-3-thienyl (8) and β-3-furyl derivatives of o-divinylbenzene (9) have been synthesised and their photochemical behaviour compared with 2-thienyl (7) and 2-furyl derivatives (2). Whereas the β-(2-heteroaryl) substituted o-divinylbenzenes (7 or 2) give only bicyclo[3.2.1]octadiene structure (14 or 1) by 1,6-ring closure of the biradical intermediate, β-(3-heteroaryl) substituted o-divinylbenzenes (8 or 9) give bicyclo[3.2.1]octadiene structure (23 or 24) and bicyclo[2.1.1]hexene structure (25 or 26) by 1,6- and 1,4-ring closure, respectively. This photochemical approach provides a simple method to 2,3- and 3,2-fused thiophene and furan polycyclic compounds.  相似文献   

17.
Wittig olefination of 3-aminoquinoline-2,4(1H,3H)-diones 1 with ethyl (triphenylphosphoranylidene)acetate (Ph3PCHCO2Et) afforded (E)-3-amino-4-ethoxycarbonylmethylene-1,2,3,4-tetrahydro-2-quinolones (E)-2 and pyrrolo[2,3-c]quinoline-2,4(3aH,5H)-diones 3. An alternative approach for the synthesis of 3 via 3-bromoacetamidoquinoline-2,4(1H,3H)-diones 7, their corresponding triphenylphosphonium salts 8, and ylides A that undergo intramolecular Wittig reaction, was investigated. Under the applied reaction conditions, the phosphonium salts 8 and ylides A are so unstable that they partly decompose to 3-acetamidoquinoline-2,4(1H,3H)-diones 9 during the synthesis of 3.  相似文献   

18.
Pentacarbonyl(η2-cis-cyclooctene)chromium(0) (1) catalyzes efficiently reactions of diazo compounds with electron-rich furans. The reaction of 2-methoxyfuran (2) with alkyl α-diazoarylacetate (3a-g) furnishes the (2E,4Z)-2-aryl-hexadienedioic acid diesters (4a-g) in excellent yields. These reactions are highly regioselective. The cyclopropanation intermediates formed from 1 and diazo compounds 3a-g always arise from a carbene addition to the less substituted CC bond of 2. The resulting cyclopropanation product undergoes a ring opening reaction to form the corresponding (2E,4Z)-2-aryl-hexadienedioic acid diesters (4a-g). The pentacarbonylchromium(0)-catalyzed reactions of 2-alkylfuran (5a-b) with ethyl α-diazophenylacetate (3a) and 9-diazo-9H-fluorene (3h) produce the 1(E),3(E)-butadienes (6a-d) in very good yields.  相似文献   

19.
N-Butadienylsuccinimide (1), iso-propyl N-butadienyl-(S)-pyroglutamate (5) and N-butadienyl-(R)-4-phenyloxazolidin-2-one (6) reacted with vinylphosphonates, vicinally-substituted (2) by electronwithdrawing groups (CO2Me, CN, COMe), to furnish [4+2] cycloadducts (3-4,7-10, and 11-14) in moderate to good yields (40-88%). The reactions were highly selective: regioselectivity of 95-100%, endoselectivity of 75-92% and facial selectivity of 80-95%. The major diastereoisomers were fully characterized by 1H and 13C NMR spectroscopy.  相似文献   

20.
Ramendra Pratap  Vishnu Ji Ram 《Tetrahedron》2007,63(41):10300-10308
A novel and efficient regioselective synthesis of various arylated highly congested 7-aryl-5-methylsulfanylindan-4-carbonitriles (3a-f), methyl 7-aryl-5-methylsulfanylindan-4-carboxylates (10a-e) and 7-aryl-5-methylsulfanylindan-4-carboxylic acids (11a-e) through base-catalyzed reaction of 6-aryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carbonitriles (1a-f) and methyl 6-aryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carboxylates (9a-e) by cyclopentanone (2) has been delineated. The synthetic potential of 2-pyranone was explored further to generate molecular diversity using 6-aryl-4-sec-amino-2-oxo-2H-pyran-3-carbonitriles (7a-h), 5,6-diaryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carbonitriles (5a,b) and methyl 5,6-diaryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carboxylates (12a,b) as precursors for the ring transformation by cyclopentanone to assess the effects of substituents on the course of the reaction to obtain highly congested indans, 6,7-diaryl-5-methylsulfanylindan-4-carbonitriles (6a,b), 7-aryl-5-(piperidin-1-yl)indan-4-carbonitriles (8a-h) and methyl 6,7-diaryl-5-methylsulfanylindan-4-carboxylates (13a,b).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号