首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jacob Bernoulli (1654–1705) did most of his research on the mathematics of uncertainty – or stochastics, as he came to call it – between 1684 and 1690. However, the Ars Conjectandi, in which he presented his insights (including the fundamental “Law of Large Numbers”), was printed only in 1713, eight years after his death. The paper studies the sources and the development of Bernoulli's ideas on probability, the reasons behind the delay in publishing and the circumstances under which his masterpiece eventually reached the public.  相似文献   

2.
3.
In the 16th and 17th centuries the classical Greek notions of (discrete) number and (continuous) magnitude (preserved in medieval Latin translations of Euclid's Elements) underwent a major transformation that turned them into continuous but measurable magnitudes. This article studies the changes introduced in the classical notions of number and magnitude by three influential Renaissance editions of Euclid's Elements. Besides providing evidence of earlier discussions preparing notions and arguments eventually introduced in Simon Stevin's Arithmétique of 1585, these editions document the role abacus algebra and Renaissance views on the history of mathematics played in bridging the gulf between discrete numbers and continuous magnitudes.  相似文献   

4.
Groß and Trenkler 1 pointed out that if a difference of idempotent matrices P and Q is nonsingular, then so is their sum, and Koliha et al2 expressed explicitly a condition, which combined with the nonsingularity of P+Q ensures the nonsingularity of P-Q. In the present paper, these results are strengthened by showing that the nonsingularity of P-Q is in fact equivalent to the nonsingularity of any combination aP+bQ-cPQ (where a≠0,b≠0,a+b=c), and the nonsingularity of P+Q is equivalent to the nonsingularity of any combination aP+bQ-cPQ (where a≠0,b≠0,a+bc).  相似文献   

5.
The mathematician John von Neumann was born in Hungary but principally received his scientific education and socialization in the German science system. He received his Habilitation from the Friedrich-Wilhelms–Universität in Berlin in 1927, where he lectured as a Privatdozent until his emigration to the USA. This article aims at making a contribution to this early part of Neumann’s scientific biography by analyzing in detail the procedure that led to his Habilitation as well as the beginnings of Neumann’s research on functional analysis. An analysis of the relevant sources shows that in Berlin in the year 1927 Neumann was not yet regarded as the outstanding mathematical genius of the 20th century. Furthermore it will be seen that Neumann had great difficulties in developing the fundamental concepts for his path breaking work in spectral theory and only managed to do so with the support of the Berlin mathematician Erhard Schmidt.  相似文献   

6.
In a clear analogy with spherical geometry, Lambert states that in an “imaginary sphere” the sum of the angles of a triangle would be less than ππ. In this paper we analyze the role played by this imaginary sphere in the development of non-Euclidean geometry, and how it served Gauss as a guide. More precisely, we analyze Gauss’s reading of Bolyai’s Appendix in 1832, five years after the publication of Disquisitiones generales circa superficies curvas, on the assumption that his investigations into the foundations of geometry were aimed at finding, among the surfaces in space, Lambert’s hypothetical imaginary sphere. We also wish to show that the close relation between differential geometry and non-Euclidean geometry is already present in János Bolyai’s Appendix, that is, well before its appearance in Beltrami’s Saggio. From this point of view, one is able to answer certain natural questions about the history of non-Euclidean geometry; for instance, why Gauss decided not to write further on the subject after reading the Appendix.  相似文献   

7.
The Swedish mathematician Gösta Mittag-Leffler (1846–1927) is well-known for founding Acta Mathematica, often touted as the first international journal of mathematics. A “post-doctoral” student in Paris and Berlin between 1873 and 1876, Mittag-Leffler built on Karl Weierstrass? work by proving the Mittag-Leffler Theorem, which states that a function of rational character (i.e. a meromorphic function) is specified by its poles, their multiplicities, and the coefficients in the principal part of its Laurent expansion.  相似文献   

8.
Snellius’s Fundamenta Arithmetica et Geometrica (1615) is much more than a Latin translation of Ludolph van Ceulen’s Arithmetische en Geometrische Fondamenten. Willebrord Snellius both adapted and commented on the Dutch original in his Fundamenta, and thus his Latin version can be read as a dialogue between representatives of two different approaches to mathematics in the early modern period: Snellius’s humanist approach and Van Ceulen’s practitioner’s approach. This article considers the relationship between the Dutch and Latin versions of the text and, in particular, puts some of their statements on the use of numbers in geometry under the microscope. In addition, Snellius’s use of the Fundamenta as an instrument to further his career is explained.  相似文献   

9.
10.
The metric between subspaces M,NCn,1, defined by δ(M,N)=rk(PM-PN), where rk(·) denotes rank of a matrix argument and PM and PN are the orthogonal projectors onto the subspaces M and N, respectively, is investigated. Such a metric takes integer values only and is not induced by any vector norm. By exploiting partitioned representations of the projectors, several features of the metric δ(M,N) are identified. It turns out that the metric enjoys several properties possessed also by other measures used to characterize subspaces, such as distance (also called gap), Frobenius distance, direct distance, angle, or minimal angle.  相似文献   

11.
This article is a contribution to our knowledge of ancient Greek geometric analysis. We investigate a type of theoretic analysis, not previously recognized by scholars, in which the mathematician uses the techniques of ancient analysis to determine whether an assumed relation is greater than, equal to, or less than. In the course of this investigation, we argue that theoretic analysis has a different logical structure than problematic analysis, and hence should not be divided into Hankel’s four-part structure. We then make clear how a comparative analysis is related to, and different from, a standard theoretic analysis. We conclude with some arguments that the theoretic analyses in our texts, both comparative and standard, should be regarded as evidence for a body of heuristic techniques.  相似文献   

12.
Let Mm,n(B) be the semimodule of all m×n Boolean matrices where B is the Boolean algebra with two elements. Let k be a positive integer such that 2?k?min(m,n). Let B(m,n,k) denote the subsemimodule of Mm,n(B) spanned by the set of all rank k matrices. We show that if T is a bijective linear mapping on B(m,n,k), then there exist permutation matrices P and Q such that T(A)=PAQ for all AB(m,n,k) or m=n and T(A)=PAtQ for all AB(m,n,k). This result follows from a more general theorem we prove concerning the structure of linear mappings on B(m,n,k) that preserve both the weight of each matrix and rank one matrices of weight k2. Here the weight of a Boolean matrix is the number of its nonzero entries.  相似文献   

13.
14.
In 1912 the Finnish mathematical astronomer Karl Sundman published a remarkable solution to the three-body problem, of a type that mathematicians such as Poincaré had believed impossible to achieve. Although lauded at the time, the result dimmed from view as the 20th century progressed and its significance was often overlooked. This article traces Sundman’s career and the path to his achievement, bringing to light the involvement of Ernst Lindelöf and Gösta Mittag-Leffler in Sundman’s research and professional development, and including an examination of the reception over time of Sundman’s result. A broader perspective on Sundman’s research is provided by short discussions of two of Sundman’s later papers: his contribution to Klein’s Encyklopädie and his design for a calculating machine for astronomy.  相似文献   

15.
We characterize the sets X of all products PQ, and Y of all products PQP, where P,Q run over all orthogonal projections and we solve the problems argmin{‖P-Q‖:(P,Q)∈Z}, for Z=X or Y. We also determine the polar decompositions and Moore-Penrose pseudoinverses of elements of X.  相似文献   

16.
Let X be a topological space and let F be a filter on N, recall that a sequence (xn)nN in X is said to be F-convergent to the point xX, if for each neighborhood U of x, {nN:xnU}∈F. By using F-convergence in ?1 and in Banach spaces, we characterize the P-filters, the P-filters+, the weak P-filters, the Q-filters, the Q-filters+, the weak Q-filters, the selective filters and the selective+ filters.  相似文献   

17.
A sign pattern matrix is a matrix whose entries are from the set {+,-,0}. For a real matrix B, sgn(B) is the sign pattern matrix obtained by replacing each positive (respectively, negative, zero) entry of B by + (respectively, −, 0). For a sign pattern matrix A, the sign pattern class of A, denoted Q(A), is defined as {B:sgn(B)=A}. The minimum rank mr(A) (maximum rank MR(A)) of a sign pattern matrix A is the minimum (maximum) of the ranks of the real matrices in Q(A). Several results concerning sign patterns A that require almost unique rank, that is to say, the sign patterns A such that MR(A) = mr(A) + 1, are established and are extended to sign patterns A for which the spread is d=MR(A)-mr(A). A complete characterization of the sign patterns that require almost unique rank is obtained.  相似文献   

18.
The nullity and rank of linear combinations of idempotent matrices   总被引:2,自引:0,他引:2  
Baksalary and Baksalary [J.K. Baksalary, O.M. Baksalary, Nonsingularity of linear combinations of idempotent matrices, Linear Algebra Appl. 388 (2004) 25-29] proved that the nonsingularity of P1 + P2, where P1 and P2 are idempotent matrices, is equivalent to the nonsingularity of any linear combinations c1P1 + c2P2, where c1c2 ≠ 0 and c1 + c2 ≠ 0. In the present note this result is strengthened by showing that the nullity and rank of c1P1 + c2P2 are constant. Furthermore, a simple proof of the rank formula of Groß and Trenkler [J. Groß, G. Trenkler, Nonsingularity of the difference of two oblique projectors, SIAM J. Matrix Anal. Appl. 21 (1999) 390-395] is obtained.  相似文献   

19.
General topology has its roots in real and complex analysis, which made important uses of the interrelated concepts of open set, of closed set, and of a limit point of a set. This article examines how those three concepts emerged and evolved during the late 19th and early 20th centuries, thanks especially to Weierstrass, Cantor, and Lebesgue. Particular attention is paid to the different forms of the Bolzano–Weierstrass Theorem found in the latter's unpublished lectures. An abortive early, unpublished introduction of open sets by Dedekind is examined, as well as how Peano and Jordan almost introduced that concept. At the same time we study the interplay of those three concepts (together with those of the closure of a set and of the derived set of a set) in the struggle to determine the ultimate foundations on which general topology was built, during the first half of the 20th century.  相似文献   

20.
An important step in 17th-century research on quadratures involved the use of algebraic procedures. Pietro Mengoli (1625–1686), probably the most original student of Bonaventura Cavalieri (1598–1647), was one of several scholars who developed such procedures. Algebra and geometry are closely related in his works, particularly in Geometriae Speciosae Elementa   [Bologna, 1659]. Mengoli considered curves determined by equations that are now represented by y=K⋅xm⋅n(t−x)y=Kxm(tx)n. This paper analyzes the interrelation between algebra and geometry in this work, showing the complementary nature of the two disciplines and how their combination allowed Mengoli to calculate quadratures in a new way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号