首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
A broad range of tertiary propargylic alcohols were kinetically resolved by catalyst‐controlled enantioselective silylation. This non‐enzymatic kinetic resolution is catalyzed by a Cu?H species and makes use of the commercially available precatalyst MesCu/(R,R)‐Ph‐BPE and a simple hydrosilane as the resolving reagent. Both alkyl,aryl‐ as well as dialkyl‐substituted propargylic alcohols participate, and especially high selectivity factors are achieved when the alkyne terminus carries a TIPS group, which also enables facile post‐functionalization in this position (s up to 207).  相似文献   

7.
8.
The use of a convenient protecting group for boronates allows a selective, catalyzed SN2′ reaction to generate allylboronates which are applied for the synthesis of enantiomerically pure homoallylic alcohols. Depending on the configuration of both catalyst and the protecting group any of the four possible stereoisomers can be formed. The rationale behind the selective addition is supported by density functional theory calculations.  相似文献   

9.
10.
11.
Described is an efficient catalytic asymmetric intermolecular C? C bond‐formation process to generate acyclic all‐carbon quaternary stereocenters. The reactions overcome the unfavorable steric hindrance around reactive centers, and the competitive elimination (E1), to form a range of useful indole products with excellent efficiency and enantioselectivity.  相似文献   

12.
13.
14.
Microarrays are one of the hottest areas in biological research today. Microarrays have been mostly applied to nucleic acid analysis, specifically to the assessment of which genes are being expressed and at what level. Early microarrays were prepared by using photolithographic methods, which were more commonly used for integrated circuit (“computer chip”) production. Hence the colloquial term “DNA chip” came into being. The completion of the sequencing of the human genome and that of many other organisms makes the determination of gene function an important next step in understanding the role of DNA in the processes of life. DNA microarrays are an excellent tool to address this question because their numerous probe sites enable the analysis of many genes simultaneously. With good experience in this initial use, many further applications of microarrays are being developed, including genotyping in research and genetic diagnosis in medicine. DNA microarrays have made abundantly clear the power of vast parallelism in biological analysis, which is raising interest in other types of microarrays (small‐molecule, protein). Many applications for DNA microarrays have been developed and clearly many more will emerge through the creativity of the scientists who use them. In early studies, users produced their own microarrays. The apparent power of microarrays has demanded improvements in production methods, and technologies from physical sciences and engineering are now being applied to DNA chips. Many branches of chemistry can contribute to improved methods: from synthetic chemistry (to attach or prepare DNA), to the physical chemistry of surfaces, to analytical chemistry (to assess surface reactions).  相似文献   

15.
16.
An efficient synthesis of functionalized tertiary α‐silyl alcohols by an enantio‐ and diastereoselective copper‐catalyzed three‐component coupling of 1,3‐dienes, bis(pinacolato)diboron, and acylsilanes is reported. The reaction proceeds well with different 1,3‐dienes and a broad range of aryl‐ as well as alkenyl‐ but also alkyl‐substituted acylsilanes. The target compounds are formed with high regio‐, diastereo‐, and enantioselectivity (up to 99 % ee and d.r. >20:1) and are highly versatile synthetic building blocks.  相似文献   

17.
Pelargene® is a commercial fragrance sold as a mixture of three regioisomeric pyran derivatives ( 1 – 3 ). The enantiomers of each of the two possible diastereoisomers of 1 – 3 were prepared by means of a biocatalyzed approach, and the odor properties of the twelve isolated stereoisomers were evaluated.  相似文献   

18.
Chen ZN  Fu G  Xu X 《Organic letters》2011,13(8):2046-2049
It is shown that two competitive pathways (T2 vs T4) exist for Grignard reagent formation. While the nonradical pathway T2 leads to retention of the configuration, the radical pathway T4 gives racemization. Our calculations suggest the way that T2 can be enhanced, which should be of significance to prompt new synthesis approaches for the preparation of chiral Grignard reagents.  相似文献   

19.
A new application of silicon Grignard reagents in C(sp3)?Si bond formation is reported. With the aid of BF3?OEt2, these silicon nucleophiles add across alkenes activated by various azaaryl groups under copper catalysis. An enantioselective version employing benzoxazole‐activated alkenes as substrates and a CuI‐josiphos complex as catalyst has been developed, forming the C(sp3)?Si bond with good to high enantiomeric ratios (up to 97:3). The method expands the toolbox for “conjugate addition” type C(sp3)?Si bond formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号