首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conditions necessary for the complete decomposition of six organic arsenic compounds, namely methylarsonic acid (MMAA), dimethylarsinic acid (DMAA), trimethylarsine oxide, tetramethylarsonium iodide, arsenocholine bromide (AsC) and arsenobetaine (AB), were investigated. The degree of decomposition of the arsenic compounds was monitored using a hydride generation (HYD) technique, because the response from this system depends strongly on the chemical species of arsenic, with inorganic arsenic (the expected product from these decomposition experiments) giving a much more intense HYD signal than the organic arsenic compounds. The arsenic compounds were decomposed by heating them with three types of acid mixture, namely HNO3? HClO4, HNO3? HClO4? HF, or HNO3? HClO4? H2SO4. Both MMAA and DMAA were decomposed completely using any of the mixed acids at a decomposition temperature of 200 °C or higher. The HNO3? HClO4? H2SO4 mixture was the most effective for decomposing AsC and AB, which are the most difficult compounds among all types of organic arsenic compound to decompose and render inorganic. The complete decomposition of AB was only achieved, however, when the temperature was 320 °C or higher, and the sample was evaporated to dryness. When the residue from this treatment was examined by high‐performance liquid chromatography combined with inductively coupled plasma atomic emission spectrometry, all of the arsenic was found to be present as arsenic(V). The optimized conditions (HNO3? HClO4? H2SO4 at 320 °C) for decomposing AB were then used to determine the total amount of arsenic in marine organisms known to contain AB. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Arsenic compounds were extracted with chloroform/methanol/water from tissues of marine animals (four carnivores, five herbivores, five plankton feeders). The extracts were purified by cation and anion exchange chromatography. Arsenobetaine [(CH3)3As+CH2COO?], dimethylarsinic acid [(CH3)2AsOOH], trimethylarsine oxide [(CH3)3AsO] and arsenite, arsenate, and methylarsonic acid [(CH3)AsO(OH)2] as a group with the same retention time were identified by high-pressure liquid chromatography. Arsenic was determined in the collected fractions by graphite furnace atomic absorption spectrometry. Arsenobetaine found in all the animals was almost always the most abundant arsenic compound in the extracts. These results show that arsenobetaine is present in marine animals independently of their feeding habits and trophic levels. Arsenobetaine-containing growth media (ZoBell 2216E; solution of inorganic salts) were mixed with coastal marine sediments as the source of microorganisms. Arsenobetaine was converted in both media to trimethylarsine oxide and trimethylarsine oxide was converted to arsenite, arsenate or methylarsonic acid but not to dimethylarsinic acid. The conversion rates in the inorganic medium were faster than in the ZoBell medium. Two dominant bacterial strains isolated from the inorganic medium and identified as members of the Vibro–Aeromonas group were incapable of degrading arsenobetaine.  相似文献   

3.
Marine organisms, including phyto‐ and zoo‐plankton, macroalgae, and animals, concentrate arsenic in various organic forms. However, the distribution and fate of these organoarsenicals in marine environments remains unclear. In this study, the distribution of organoarsenicals in coastal marine sediment in Otsuchi Bay, Japan, has been determined. Methylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, arsenobetaine, arsenocholine and other unidentified arsenic species were detected in marine sediment by high‐performance liquid chromatography–inductively coupled plasma mass spectrometry analysis of methanol–water extracts. Arsenobetaine was the dominant organoarsenical at four of the seven stations where tests were carried out, and unidentified species or dimethylarsinic acid dominated at the other stations. Total organoarsenicals (as arsenic) in the surface sediment amounted to 10.6–47.5 µg kg?1 dry sediment. Core analysis revealed that concentrations of organoarsenicals decreased with depth, and they are considered to be degraded within 60 years of deposition. These results show that organoarsenicals formed by marine organisms are delivered to the sediment and can be degraded within several decades. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
In this study the accumulation and distribution of arsenic compounds in marine fish species in relation to their trophic position was investigated. Arsenic compounds were measured in eight tissues of mullet Mugil cephalus (detritivore), luderick Girella tricuspidata (herbivore) and tailor Pomatomus saltatrix (carnivore) by high performance liquid chromatography–inductively coupled plasma‐mass spectrometry. The majority of arsenic in tailor tissues, the pelagic carnivore, was present as arsenobetaine (86–94%). Mullet and luderick also contained high amounts of arsenobetaine in all tissues (62–98% and 59–100% respectively) except the intestines (20% and 24% respectively). Appreciable amounts of dimethylarsinic acid (1–39%), arsenate (2–38%), arsenite (1–9%) and trimethylarsine oxide (2–8%) were identified in mullet and luderick tissues. Small amounts of arsenocholine (1–3%), methylarsonic acid (1–3%) and tetramethylarsonium ion (1–2%) were found in some tissues of all three species. A phosphate arsenoriboside was identified in mullet intestine (4%) and from all tissues of luderick (1–6%) except muscle. Pelagic carnivore fish species are exposed mainly to arsenobetaine through their diet and accumulate the majority of arsenic in tissues as this compound. Detritivore and herbivore fish species also accumulate arsenobetaine from their diet, with quantities of other inorganic and organic arsenic compounds. These compounds may result from ingestion of food and sediment, degradation products (e.g. arsenobetaine to trimethylarsine oxide; arsenoribosides to dimethylarsinic acid), conversion (e.g. arsenate to dimethylarsinic acid and trimethylarsine oxide by bacterial action in digestive tissues) and/or in situ enzymatic activity in liver tissue. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Efflux studies of radio-labelled methylarsonic acid (MMA) and dimethylarsinic acid (DMA) encapsulated in liposomes afford the following permeability values for the two arsenicals: 1.4 × 10?13 cm s?1 and 4.5 × 10?11 cm s?1 for MMA and DMA, respectively. These data are compared with the octanol/water partition coefficients which are 7.4 × 10?3 and 8.4 × 10?3 for MMA and DMA, respectively.  相似文献   

6.
As one of the experiments to pursue marine circulation of arsenic, we studied microbiological conversion of arsenocholine to arsenobetaine, because arsenocholine may be a precursor of arsenobetaine in these ecosystems. Two culture media, 1/5 ZoBell 2216E and an aqueous solution of inorganic salts, were used in this in vitro study. To each medium (25 cm3) were added synthetic arsenocholine (0.2%) and about 1 g of the sediment, and they were aerobically incubated at 25°C in the dark. These conversion experiments were performed in May and July 1990. In both seasons, two or three metabolites were derived in each mixture. These metabolites were purified using cation-exchange chromatography. Their structures were confirmed as arsenobetaine, trimethylarsine oxide and dimethylarsinic acid by high-performance liquid chromatography, thin-layer chromatography, FAB mass spectrometry and a combination of gas-chromatographic separation with hydride generation followed by a cold-trap technique and selected-ion monitoring mass spectrometric analysis. From this and other evidence it is concluded that, in the arsenic cycle in these marine ecosystems, as recently postulated by us, the pathway arsenocholine → arsenobetaine → trimethylarsine oxide → dimethylarsinic acid → methanearsonic acid → inorganic arsenic can be carried out by micro-organisms alone.  相似文献   

7.
A series of diphenylarsenic(III) and triphenylarsenic(V) derivatives of heterocyclic dithiocarbamates of the type: and [where X = >?CH2 (Pipdtc), >CH–CH3 (4-MePipdtc), >O (Morphdtc), >N-CH3 (N-MePzdtc), and?>?NH (Pzdtc)] [n?=?1 or 2] have been synthesized by reactions of diphenylarsenic(III) chloride and triphenylarsenic(V) dibromide with the sodium salt of heterocyclic dithiocarbamates in 1?:?1 and 1?:?2?M ratios, respectively, in refluxing benzene. All these newly synthesized compounds have been characterized by their elemental analyses, molecular weight measurements, and ESI mass studies. Structures of the compounds have been proposed on the basis of IR, 1H, and 13C NMR spectral data which suggest anisobidentate mode of bonding.  相似文献   

8.
In order to understand the distribution and the cycle of arsenic compounds in the marine environment, the horizontal distributions of arsenic(V) [As(V)], arsenic(III) [As(III)], monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) in the Indian Pacific Oceanic surface waters have been investigated. This took place during cruises of the boat Shirase from Tokyo to the Syowa Station (15 November–19 December 1990), of the tanker Japan Violet from Sakai to Fujayrah (28 July–17 August 1991) and of the boat Hakuho-maru from Tokyo to Auckland (19 September–27 October 1992). Vertical distributions of arsenic in the west Pacific Ocean have also been investigated. The concentration of As(V) was found to be relatively higher in the Antarctic than in the other areas. Its concentration varied from 340 ng dm?3 (China Sea) to 1045 ng dm?3 (Antarctic). On the other hand, the concentrations of the biologically produced species, MMAA and DMAA, were extremely low in the Antarctic and southwest Pacific waters. Their concentrations in Antarctic waters were 8 ng dm?3 and 22 ng dm?3 and those in the southwest Pacific were 12 ng dm?3 and 25 ng dm?3. In the other regions the concentration varied from 16 ng dm?3 (China Sea) to 36 ng dm?3 (north Indian Ocean) for MMAA and from 50 ng dm?3 (east Indian Ocean) to 172 ng dm?3 (north Indian Ocean) for DMAA. As a result, with the exception of Antarctic and southwest Pacific waters, the percentages of each arsenic species in the surface waters were very similar and varied from 52% (east Indian Ocean) to 63% (northwest Pacific Ocean) for As(V), from 22% (northwest Pacific Ocean) to 27% (east Indian Ocean) for As(III) and from 15% (northwest Pacific Ocean) to 21% (north and east Indian Oceans) for the methylated arsenics (MMAA+DMAA). These percentages in Antarctic waters were 97%, 0.2% and 2.8%, respectively, and those in the southwest Pacific Ocean were 97% for As(V)+As(III) and 3% for MMAA+DMAA. The very low concentrations of the biologically produced species in Antarctic waters and that of methylated arsenic in southwest Pacific waters indicated that the microorganism communities in these oceans was dominated by microorganisms having a low affinity towards arsenic. Furthermore, microorganism activity in the Antarctic was also limited due to the much lower temperature of the seawater there. The vertical profile of inorganic arsenic was 1350 ng dm?3 in surface waters, 1500 ng dm?3 in bottom waters with a maximum value of 1700 ng dm?3 at a depth of about 2000 m in west Pacific waters. This fact suggested the uptake of arsenic by microorganisms in the surface waters and the co-precipitation of arsenic with hydrated heavy-metal oxides in bottom waters. The suggested uptake of inorganic arsenic and subsequent methylation was also supported by the profile of DMAA, with a high concentration of about 26 ng dm?3 in surface water and a significant decrease to a value of 9 ng dm?3 at a depth of 1000 m.  相似文献   

9.
Batch experiments were conducted on aqueous solutions containing arsenite, arsenobetaine, methylarsonic acid or phenylarsonic acid in contact with natural zeolites to examine their interaction. The concentration of the arsenic species in the liquid phase at equilibrium before and after contact was measured by means of liquid chromatography coupled with inductively coupled plasma mass spectrometry detection. Clinoptilolites completely removed arsenobetaine from the solution and the resulting amounts of dimethylarsinic acid were detected. The methylarsonic acid maximum concentration diminution was reached at a mass—to volume V value of m/V = 0.2. Phenylarsonic acid solution decreased its concentration 75% after treatment with clinoptilolites. Untreated mordenites in contact with arsenite solutions led to the formation of arsenate, whereas acid‐washed mordenites practically removed arsenobetaine and were less effective for methylarsonic acid. To show the incompatibility of molecular dimensions with the zeolite windows, the molecular parameters of surface area, molecular volume, molecular length, and the width and depth of arsenite, arsenate and a series of ten organic arsenic compounds were calculated. Since sorption onto the external zeolite surface rather than a sieve process defined the interaction, an acid‐catalysed reaction mechanism is proposed to explain the transformation results. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Polyphysa peniculus was grown in artificial seawater in the presence of arsenate, arsenite, monomethylarsonate and dimethylarsinic acid. The separation and identification of some of the arsenic species produced in the cells as well as in the growth medium were achieved by using hydride generation–gas chromatography–atomic absorption spectrometry methodology. Arsenite and dimethylarsinate were detected following incubation with arsenate. When the alga was treated with arsenite, dimethylarsinate was the major metabolite in the cells and in the growth medium; trace amounts of monomethylarsonate were also detected in the cells. With monomethylarsonate as a substrate, the metabolite is dimethylarsinate. Polyphysa peniculus did not metabolize dimethylarsinic acid when it was used as a substrate. Significant amounts of more complex arsenic species, such as arsenosungars, were not observed in the cells or medium on the evidence of flow injection–microwave digestion–hydride generation–atomic absorption spectrometry methodology. Transfer of the exposed cells to fresh medium caused release of most cell–associated arsenicals to the surrounding environment.  相似文献   

11.
Trimethyl(carboxymethyl)arsonium zwitterion (arsenobetaine) is virtually ubiquitous in marine animals consumed by man. Experimental work on the transformation of arsenate to arsenobetaine in the marine environment is reviewed. Current evidence favors the conversion of arsenate to dimethyl(ribosyl)arsine oxides by algae, and the microbially mediated transformation of dimethyl(ribosyl)arsine oxides to arsenobetaine or to its immediate precursors in the sediments. Information about the transfer of arsenobetaine from the sediments to marine animals is lacking.  相似文献   

12.
Tributyltin (TBT) has been measured in water in 12 of 15 harbors studied during US Navy baseline surveys. The highest concentrations of TBT (some exceeding laboratory toxicity limits) have been found in yacht harbors and near vessel repair facilities. Many sites (75%) in harbors and estuaries had no detectable (<5 ng dm?3) TBT. TBT monitoring studies with increased detection limits (<1 ng dm?3) have documented a high degree of TBT variability associated with tide, season and intermittent point source discharges. Although yacht harbors were shown to be the principal TBT source in most regions, dry-docks can be significant sources. Tributyltin degradation studies were conducted using unfiltered seawater from four geographic regions and incubated under natural conditions. Degradation half-lives were always in the range of 4–19 days, providing evidence that TBT is not highly persistent in the water column at environmental concentrations. Preliminary degradation experiments suggest that TBT has a longer residence time in sediment with a half-life of several months. Tributyltin is primarily in the dissolved form in unfiltered seawater, although the association with particulate fractions may increase in samples collected near yacht repair facilities, Partition coefficients for particulate TBT versus bulk water are frequently near 3000 and vary with the particulate concentration, salinity and presence of natural organics.  相似文献   

13.
Arsenobetaine, an organo‐arsenic compound known to be non‐toxic, occurs ubiquitously in marine animals. To elucidate the food hygiene safety of the degradation products of arsenobetaine formed on cooking, arsenicals generated by roasting the muscles of the starspotted shark Mustelus manazo and of the red crayfish Panulirus longipes femoristriga were investigated. ­As a result, both muscle types were found to contain the tetramethylarsonium ion, which is reported to show a higher acute toxicity than dimethylarsinic acid (cacodylic acid) or methanearsonic acid. As a minor compound, arsenate was also detected in the muscle of M. manazo. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Separation and quantification of six arsenic species have been performed in cod, tuna and mussel samples by high performance liquid chromatography (HPLC) using inductively coupled plasma-optical emission spectrometry (ICP-OES) and hydride generation-quartz furnace atomic absorption spectrometry (HG-QFAAS) as detection techniques. It has been shown that arsenic extraction with a water-methanol (11) mixture is sufficiently quantitative for the cod and tuna, in which arsenic is mainly present as arsenobetaine (about 90% of total As extracted). In contrast, only 60% of the element is extracted from the mussels and the chromatograms obtained reveal the presence of an unknown compound. Detection limits are in the g ml–1 range for the HPLC-ICP-OES technique (quantification of arsenobetaine and arsenocholine) and in the ng ml–1 range for the HPLC-HG-QFAAS system (quantification of arsenite, arsenate, monomethylarsonic and dimethylarsinic acids).  相似文献   

15.
The separation of arylarsonic acids by HPLC on a reverse-phase C18 column is described. Solutions containing these arsenicals and others such as arsenobetaine are photo-oxidized to arsenate by ultraviolet (UV) radiation (1200 W, 1 h exposure). This allows the analysis of the solution for arsenic by hydride generation techniques. The method, UV HGAA, is developed and applied to the determination of arsenic in the methanol extracts of the Manila clam (Verupis japonica) and the Horse clam (Schizothoerus nutalli).  相似文献   

16.
In the marine environment, arsenic accumulates in seaweed and occurs mostly in the form of arsenoribofuranosides (often called arsenosugars). This study investigated the degradation pathways of arsenosugars from decaying seaweed in a mesocosm experiment. Brown seaweed (Laminaria digitata) was placed on top of a marine sediment soaked with seawater. Seawater and porewater samples from different depths were collected and analysed for arsenic species in order to identify the degradation products using high‐performance liquid chomatography–inductively coupled plasma mass spectrometry. During the first 10 days most of the arsenic found in the seawater and the shallow sediment is in the form of the arsenosugars released from the seaweed. Dimethylarsenoylethanol (DMAE), dimethylarsinic acid (DMA(V)) and, later, monomethylarsonic acid (MMA(V)) and arsenite and arsenate were also formed. In the deeper anaerobic sediment, the arsenosugars disappear more quickly and DMAE is the main metabolite with 60–80% of the total arsenic for the first 60 days besides a constant DMA(V) contribution of 10–20% of total soluble arsenic. With the degradation of the soluble DMAE the solubility of arsenic decreases in the sediment. The final soluble degradation products (after 106 days) were arsenite, arsenate, MMA(V) and DMA(V). No arsenobetaine or arsenocholine were identified in the porewater. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A method for the separation and identification of inorganic and methylated arsenic compounds in marine organisms was constructed by using a hydride generation/cold trap/gas chromatography mass spectrometry (HG/CT/GC MS) measurement system. The chemical form of arsenic compounds in marine organisms was examined by the HG/CT/GC MS system after alkaline digestion. It was observed that trimethylarsenic compounds were distributed mainly in the water-soluble fraction of muscle of carnivorous gastropods, crustaceans and fish. Also, dimethylated arsenic compounds were distributed in the water-soluble fraction of Phaeophyceae. It is thought that most of the trimethylated arsenic is likely to be arsenobetaine since this compound released trimethylarsine by alkaline digestion and subsequent reduction with sodium borohydride. The major arsenic compound isolated from the water-soluble fraction in the muscle and liver of sharks was identified as arsenobetaine from IR, FAB Ms data, NMR spectra and TLC behaviour. The acute toxicity of arsenobetaine was studied in male mice. The LD50 value was higher than 10 g kg−1. This compound was found in urine in the non-metabolized form. No particular toxic symptoms were observed following administration. These results suggest that arsenobetaine has low toxicity and is not metabolized in mice. The LD50 values of other minor arsenicals in marine organisms, trimethylarsine oxide, arsenocholine and tetramethylarsonium salt, were also examined in mice.  相似文献   

18.
Arsenobetaine, arsenocholine, trimethylarsine oxide and tetramethylarsonium iodide, which are contained in marine fishery products, were examined for their potencies on cell growth inhibition, chromosomal aberration and sister chromatid exchange (SCE). Arseno- betaine, the major water-soluble organic arsenic compound in marine animals, exhibited very low cytotoxicity towards mammalian cells. This compound showed no cell growth inhibition at a concentration of 10 mg cm−3 and the cytotoxicity was lower than 1/14 000th of that of sodium arsenite and 1/1600th of that of sodium arsenate towards BALB/c 3T3 cells. The chromosomal aberrations caused by arsenobetaine at a concentration of 10 mg cm−3 consisted mainly of chromatid gaps and chromatid breaks, but in this concentration chromosomal breakage owing to its osmotic pressure is likely to be considerable. No SCE was observed at a concentration of 1 mg cm−3. Arsenocholine and trimethylarsine oxide also showed no cell growth inhibited at a concentration of 10 mg cm−3. However, tetramethylarsonium iodide inhibition the growth of BALB/c 3T3 at a concentration of 8 mg cm−3. These compounds exhibited a low ability to induce chromosomal aberrations at a concentration range of 2–10 mg cm−3 and no SCE was observed at a concentration of 1.0 mg cm−3. These results suggested that the major and minor organic arsenic compounds contained in marine fishery products are much less cytotoxic inorganic arsenic, methylarsonic acid and dimethylarsinic acid. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Arsenic has a reputation as a poison, because arsenic trioxide was used during medieval times as an agent for murder. Lingering memories of these events make any arsenic-containing material suspect. Toxicity is a property of a specific compound and varies with the composition and structure of compounds. Developments in analytical methodology made it possible not only to determine total arsenic in a variety of matrices but also arsenic compounds. Knowledge about the arsenic cycle in marine systems has expanded considerably during the past decade. The marine arsenic cycle appears to be more complex than the cycle in the terrestrial environment. More attention must be given to the minor arsenic-containing compounds detected in organisms and experiments should be undertaken that provide information about the biochemical pathways used for the transformation of arsenic compounds.  相似文献   

20.
The determination of organotin compounds in bottom sediments is a complex process that requires a number of analytical steps, i.e. sample collection, transport and storage; extraction of analytes from sediment; derivatization; extract purification; enrichment; and the final chromatographic measurement. The whole process is time and labour consuming, and subject to securing sample representativeness. In this review the most frequently encountered problems and the examples of possible analytical solutions are presented, which encompass the specific steps of speciation analysis of these toxic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号