首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutral complexes of three phthalhydrazidylazo-1,3-diketones [phthalhydrazidylazo-acetylacetone (H2PAA),-benzoylacetone (H2PBA) and-dibenzoylmethane (H2PDM)] with Cu(II), Ni(II), Pd(II) and Fe(III) have been synthesised and characterized on the basis of their analytical data, magnetic moment, molar conductance and IR and1H NMR spectral data. Dibasic tridentate coordination of the ligands is brought out by the above spectral data. Half-wave potentials and far IR spectral data of the Cu(II) complexes indicate that the H2PAA complex is the most stable. M?ssbauer spectra of the Fe(III) complexes reveal that delocalisation of the metald electrons with the chelate ring decreases with increasing capability of the pendant groups of the ring for cross conjugation.  相似文献   

2.
Complexes of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with 3-(2-pyridyl)-1-(2-hydroxy phenyl)-2-propen-1-one (PHPO), 3-(1-naphthyl)-1-(2-hydroxy phenyl)-2-propen-1-one (NHPO) and 3-(3,4-dimethoxy phenyl)-1-(2-hydroxy phenyl)-2-propen-1-one (DMPHPO) have been synthesized and characterized by analytical, conductivity, thermal, magnetic, infrared, electronic and electron spin resonance data. Based on analytical data the stoichiometry of the complexes has been found to be 1 : 2. The conductivity data show that all these complexes are non-electrolytes. The infrared spectral data indicate that the ligand PHPO acts as uninegative tridentately towards Co(II) and Ni(II) and bidentately with Cu(II), Zn(II) and Cd(II). Ligands like NHPO and DMPHPO act as uninegative bidentately with all the metal ions. The electronic spectral data suggest that all the Co(II) complexes and Ni(II) of PHPO complex are octahedral and all the Cu(II) and Ni(II) of NHPO and DMPHPO complex are square-planar. The complex of Zn(II) and Cd(II) are tetrahedral. ESR parameters of Cu(II) complexes have been calculated and relevant conclusions have been drawn with respect to the nature of bonds present in them.  相似文献   

3.
There have been synthesized Pt(II) stereoisomeric complexes with hydroxy-α-amino acid serine (SerH = NH2CH(CH2OH)COOH is α-amino-β-hydroxypropionic acid): trans-[Pt(S-SerH)2Cl2], trans-[Pt(R-SerH)(S-SerH)Cl2] with monodentately (through NH2 group ) bound SerH and cis-, trans-[Pt(R-Ser)(S-Ser)], trans-[Pt(S-Ser)2] with bidentately bound (through groups NH2 and COO) ligands (R, S is the absolute configuration of asymmetric carbon atom). The successive phases in the synthesis of Pt(II) stereoisomeric complexes with serine were studied by 195Pt NMR spectroscopy. To identificate the compounds synthesized the method of elemental analysis, IR and NMR (195Pt, 13C, 1H) spectroscopy were used. For trans-[Pt(R-Ser)(S-Ser)] the X-ray diffraction data were obtained.  相似文献   

4.
New solid complexes of a herbicide known as dicamba (3,6-dichloro-2-methoxybenzoic acid) with Pb(II), Cd(II), Cu(II) and Hg(II) of the general formula M(dicamba)2·xH2O (M=metal, x=0-2) and Zn2(OH)(dicamba)3·2H2O have been prepared and studied. The complexes have different crystal structures. The carboxylate groups in the lead, cadmium and copper complexes are bidentate, chelating, symmetrical, in Hg(dicamba)2·2H2O - unidentate, and in the zinc salt - bidentate, bridging, symmetrical. The anhydrous compounds decompose in three stages, except for the lead salt whose decomposition proceeds in four stages. The main gaseous decomposition products are CO2, CH3OH, HCl and H2O. Trace amounts of compounds containing an aromatic ring were also detected. The final solid decomposition products are oxychlorides of metals and CuO. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
New metal(II) complexes with empirical formulae Co(ibup)2·4H2O, Cd(ibup)2·3H2O, Co(nap)2·H2O, Cd(nap)2·3H2O (where ibup=(CH3)2CHCH2C6H4CH(CH3COO) and nap=CH3O(C10H6)CH(CH3COO)) were isolated and investigated. The complexes were characterized by elemental analysis, molar conductance, IR spectroscopy and thermal decomposition. The thermal behavior was studied by TG, DTG, DTA methods under non-isothermal conditions in air atmosphere. The hydrated complexes lose water molecules in first step. All complexes decompose via intermediate products to corresponding metal oxides CoO and CdO. A coupled TG-MS system was used to detect the principal volatile products of thermolysis and fragmentation processes of Co(nap)2·H2O. The IR spectra of studied complexes revealed also absorption of the carboxylate group. Principal concern with the position of asymmetric, symmetric frequencies. The value of their separation allow to deduce about type of coordination these groups.  相似文献   

6.
New mixed ligand complexes of the following stoichiometric formulae: M(2-bpy)2(RCOO)2·nH2O, M(4-bpy)(RCOO)2·H2O and M(2,4’-bpy)2(RCOO)2·H2O (where M(II)=Zn, Cd; 2-bpy=2,2’-bipyridine, 4-bpy=4,4′-bipyridine, 2,4′-bpy=2,4′-bipyridine; R=C2H5; n=2 or 4) were prepared in pure solid-state. These complexes were characterized by chemical and elemental analysis, IR and conductivity studies. Thermal behaviour of compounds was studied by means of DTA, DTG, TG techniques under static conditions in air. The final products of pyrolysis of Cd(II) and Zn(II) compounds were metal oxides MO. A coupled TG/MS system was used to analyse of principal volatile products of thermal decomposition or fragmentation of Zn(4-bpy)(RCOO)2·H2O under dynamic air and argon atmosphere. The principal species correspond to: C+, CH+, CH3 +, C2H2 +, HCN+, C2H5 + or CHO+, CH2O+ or NO+, CO2 +, 13C16O2 + and 12C16O18O+ and others; additionally CO+ in argon atmosphere.  相似文献   

7.
Spectral and thermochemical studies of complexes of zinc(II)tetra-tertbutylphthalocyanine (Zn(t-Bu)4Pc) with some amines have been carried out. Spectral effects of the complex formation of the metallophthalocyanine with amines have been established. It has been found that an ability of Zn(t-Bu)4Pc to coordinate amines depends on both their nature and conditions of preparation. Similarity of the crystal structures of biligand and monoligand of Zn(t-Bu)4Pc complexes to individual β- and α-polymorphs of Zn(t-Bu)4Pc, respectively is proved by IR spectroscopy and X-ray diffraction method.  相似文献   

8.
Nickel(II) and cobalt(II) complexes with the commercial herbicides 2,4-dichlorophenoxyacetic acid (2,4D; C8H6O3Cl2) and 2-(2,4-dichlorophenoxy)-propionic acid (2,4DP; C9H8O3Cl2) were prepared and characterized. On the basis of the results of elemental analysis and Ni and Co determination, the following molecular formulae were proposed for the obtained compounds: Ni(C8H5O3Cl2)2·6H2O, Co(C8H5O3Cl2)2·6H2O, Ni(C9H7O3Cl2)2·2H2O and Co(C9H7O3Cl2)2·2H2O. X-ray powder analysis was carried out. The IR, electronic (VIS) spectra and conductivity data were discussed. Water solubility of the synthesized complexes at room temperature was examined. Thermal decomposition of the compounds was studied. Dehydration processes occur during heating in air. The anhydrous compounds decompose via different intermediate products to oxides. TG/MS studies indicate formation of gaseous mass fragments of decomposition including H2O+, OH+, CO2 +, HCl+, Cl2 +, CH3Cl+, CH2O+, C6H6 + and other. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The formation equilibria of the binary complex of cadmium(II) with triethylenetetramine (Trien) and of ternary complexes Cd(Trien)L, where L refers to amino acids, DNA constituents and related compounds have been investigated. Cd(II) was found to form a highly stable complex with Trien. The acid-base equilibria of Cd(Trien)2+ were characterized. Ternary complexes of amino acids and DNA constituents are formed through stepwise mechanism, whereby Trien binds to Cd(II), followed by interaction with ligand (L), whereas thiol-containing ligands form ternary complexes through a simultaneous mechanism. The formation constants of the complexes were determined at 25 °C and , = 0.1M NaNO3. The participation of different ligand functional groups in the complex-formation was examined.  相似文献   

10.
Interaction between MnCl2 and diethylamine (DEA) in aqueous solutions has been studied by UV, IR, and EPR spectroscopy as part of the design and research program on models of natural photosystems. The composition of the precipitate for comparable concentrations of reagents and solute oxygen has been investigated. Mn(II) was found to be oxidized with oxygen to give MnO2·H2O as a precipitate. In the solution over the precipitate, Mn(III) complexes with DEA are formed; the complex molecule has four and six amine molecules in the coordination sphere.  相似文献   

11.
The stability constants and coordination modes of the mixed-ligand complexes formed by copper(II) ion and ethylenediamine as a primary ligand and methioninehydroxamic acid (Metha) or histidinehydroxamic acid (Hisha) as a secondary ligand L were determined by potentiometric titration, UV–Vis and EPR spectroscopy. The obtained results suggest the formation of mixed-ligand species in basic solution with 4N coordination – both amine and hydroxamic nitrogens of Metha or Hisha (NH2, Nha) and two amine nitrogens of en (2 × NH2) in the equatorial plane.  相似文献   

12.
The infrared and Raman spectra of the bis-chelated Zn(II) complexes of the amino acids glycine, alanine, valine, leucine, isoleucine and phenylalanine were recorded and analyzed in relation to its structural peculiarities. Some comparisons between the recorded spectra are also presented and the characteristics of the carboxylate motions as well as those of the metal-to-ligand vibrations are discussed in detail.  相似文献   

13.
New mixed-ligand complexes with empirical formulae M(4-bpy)L2·1.5H2O (M(II)=Mn, Co), Ni(4-bpy)2L2 and Cu(4-bpy) L2·H2O (where: 4-bpy=4,4'-bipyridine, L=CC L2HCOO-) have been isolated in pure state. The complexes have been characterized by elemental analysis, ir spectroscopy, conductivity (in methanol, dimethylformamide and dimethylsulfoxide solutions) and magnetic and x-ray diffraction measurements. The Mn(II) and Co(II) complexes are isostructural. The way of metal-ligand coordinations discussed. the ir spectra suggest that the carboxylate groups are bonded with metal(II) in the same way (Ni, Cu) or in different way (Mn, Co). The solubility in water is in the order of 19.40·10-3÷1.88·10-3ł mol dm-3ł. During heating the hydrate complexes lose all water in one step. The anhydrous complexes decompose to oxides via several intermediate compounds. A coupled TG-MS system was used to analyse the principal volatile products of obtained complexes. The principal volatile products of thermal decomposition of complexes in air are: H2O2 +, CO2 +, HCl+, Cl2 +, NO+ and other. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 2,5-dichlorobenzoates were prepared and their compositions and solubilities in water at 295 K were determined. The IR spectra and X-ray diffractograms of the obtained complexes were recorded. The complexes of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) were obtained as solids with a 1:2 molar ratio of metal to organic ligand and different degrees of hydration. When heated at a heating rate of 10 K min-1, the hydrated complexes lose some (Co, Zn) or all (Ni, Cu, Cd) of the crystallization water molecules and then decompose to oxide MO (Co, Ni) or gaseous products (Cu, Zn, Cd). When heated at a heating rate of 5 K min-1, the complexes of Ni(II) and Cu(II) lose some (Ni) or all (Cu) of the crystallization water molecules and then decompose directly to MO. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
New metal complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with salicylidine-2-aminobenzimidazole (SABI) are synthesized and their physicochemical properties are investigated using elemental and thermal analyses, IR, conductometric, solid reflectance and magnetic susceptibility measurements. The base reacts with these metal ions to give 1:1 (Metal:SABI) complexes; in cases of Fe(III), Co(II), Cu(II), Zn(II) and Cd(II) ions; and 1:2 (Metal:SABI) complexes; in case of Ni(II) ion. The conductance data reveal that Fe(III) complex is 2:1 electrolyte, Co(II) is 1:2 electrolyte, Cu(II), Zn(II) and Cd(II) complexes are 1:1 electrolytes while Ni(II) is non-electrolyte. IR spectra showed that the ligand is coordinated to the metal ions in a terdentate mannar with O, N, N donor sites of the phenloic -OH, azomethine -N and benzimidazole -N3. Magnetic and solid reflectance spectra are used to infer the coordinating capacity of the ligand and the geometrical structure of these complexes. The thermal decomposition of the complexes is studied and indicates that not only the coordinated and/or crystallization water is lost but also that the decomposition of the ligand from the complexes is necessary to interpret the successive mass loss. Different thermodynamic activation parameters are also reported, using Coats-Redfern method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Oxazolone forms (1:1) complexes with Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ chlorides, as well as forms (1:1) complexes with Co2+ and Cu2+ acetates. All the complexes are found to be non-electrolytes in DMF; tetrahedral, square-planar and octahedral structures are assigned to them based on electronic and magnetic data. IR studies reveal that the complexes are formed by donating the lone-pair electron from O and N atoms to the metal ion. The thermal decomposition of the [ML·mnH2O]y·H2O chelates was studied by TG–DTA techniques. The mechanism of the decomposition has been established from TG–DTA data. The kinetic parameters, activation energy (Ea) and pre-exponential factor (A), were calculated from TG curves using Coats and Redfern method. Relative thermal stabilities of the chelates have been evaluated on the basis of these parameters.  相似文献   

17.
Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 3-methylglutarates were prepared as solids with general formula MC6 H8 O4 ×n H2 O, where n =0–8. Their solubilities in water at 293 K were determined (7.0×10−2 −4.2×10−3 mol dm−3 ). The IR spectra were recorded and thermal decomposition in air was investigated. The IR spectra suggest that the carboxylate groups are mono- or bidentate. During heating the hydrated complexes lose some water molecules in one (Mn, Co, Ni, Cu) or two steps (Cd) and then mono- (Cu) or dihydrates (Mn, Co, Ni) decompose to oxides directly (Mn, Cu, Co) or with intermediate formation of free metals (Co, Ni). Anhydrous Zn(II) complex decomposes directly to the oxide ZnO. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Spectroscopic (IR), thermoanalytical (TG/DTG, DTA) and biological methods were applied to investigate physicochemical and biological properties of seven zinc(II) complex compounds of the following formula Zn(HCOO)2·2H2O (I), Zn(HCOO)2·tph (II), Zn(CH3COO)2·2H2O (III), Zn(CH3COO)2·tph (IV), Zn(CH3COO)2·2phen (V), Zn(CH3CH2COO)2·2H2O (VI), Zn(CH3CH2CH2COO)2·2H2O (VII), where tph=theophylline, phen=phenazone. The formation of various intermediates during thermal decomposition suggests the dependence on the length of aliphatic carboxylic chain and type of N-donor ligand (tph, phen). The final product of the thermal decomposition was ZnO. The antimicrobial activity of these complexes were tested against G+ and G bacteria. Strong inhibitive effect was observed towards E. coli, salmonellae and Staph. aureus.  相似文献   

19.

Some complexes of 3-methyl-2-benzothiazolylidenamido thiophosphoryl dichloride (L1), (3-methyl-2-benzothiazolylidenamido)–bis-(diethylamido) thiophosphate (L2), 3-benzyl-2-benzothiazolylidenamido thiophosphoryl dichloride (L3), and (3-benzyl-2-benzothiazolylidenamido)–bis-(diethylamido) thiophosphate (L4) have been synthesized by a reaction with mercuric chloride in a 1:1 ratio. The complexes have been characterized by elemental analysis, electrical conductivity, and mass and IR spectral studies. The stability constants of these complexes have also been determined by a spectrophotometric technique and compared with zinc complexes of the previously discussed ligands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号