首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A major light-harvesting complex (LHC) has been obtained from thylakoids of Amphidinium carterae solubilized with digitonin or decylmaltoside and separated by sucrose-gradient centrifugation. The digitonin-LHC forms a dark brown band at -17% sucrose and the decylmaltoside LHC one at -7% sucrose. Excellent energy transfer is retained from chlorophyll c and carotenoid to chlorophyll a. Absorbance and fluorescence excitation spectra show the existence of two major forms of chlorophyll c, one absorbing at 634 nm and the other at 649 nm. Linear dichroism spectra show the Qy transition of both forms of chlorophyll c to be aligned at <35° to the membrane plane. On sodium dodecylsulfate polyacrylamide gels the complex resolves as a single band of 19 kDa. A partial amino acid sequence shows the N-terminus to be unblocked but modified; there is a persistent ambiguity of Ser/Asn at residue 4 and evidence for multiple but very similar polypeptides within the 19 kDa band. The peptide has strong identity with the N-terminal regions of LHC from Phaeodactylum and Pavlova and LHC 1 of higher plants. Antibodies to the 19 kDa peptide react weakly with LHC of brown algae, diatoms and Prymnesiophytes but not with those of higher plants or Cryptophytes.  相似文献   

2.
Using a pump and test beam technique in the frequency domain with pump pulses in the nanosecond time range, the nonlinear transmission properties were investigated at room temperature in photosystem (PS) II membrane fragments and isolated light-harvesting chlorophyll a/b-protein preparations (LHC II preparations). In LHC II preparations and PS II membrane fragments, respectively, pump pulses of 620 nm and 647 nm cause a transmission decrease limited to a wavelength region in the nearest vicinity of the pump pulse wavelength (full width at half maximum ' 0.24 nm). In contrast, at 670 nm neither a transmission decrease nor a narrow band feature were observed. The data obtained for PS II membrane fragments and LHC II preparations at shorter wavelengths (620 nm, 647 nm) were interpreted in terms of excited state absorption of whole pigment-protein clusters within the light-harvesting antenna of photosystem II. The interpretation of the small transmission changes as homogeneously broadened lines led to a transversal relaxation time for chlorophyll in the clusters of about 4 ps.  相似文献   

3.
A photosystem (PS) I holocomplex was isolated from Pleurochloris meiringensis Vischer (Xanthophyceae) using sucrose density centrifugation. This complex exhibited a fluorescence emission maximum at 715 nm, which is in accordance with the long wavelength emission of whole cells. The complex was further dissociated into a core complex and a light-harvesting protein (LHC I). The core protein contains mainly Chl a and β-carotene, is 8.25 times enriched in P700 and has its main emission maximum at 715 nm. Therefore, the longest wavelength emission of P. meiringensis is due to the PS I core, which is in contrast to higher plants. The LHC I differs from LHC II with regard to its polypeptide pattern as well as its spectral properties. The arrangement of antennae is discussed in relation to the regulation of energy transfer between the photosystems.  相似文献   

4.
The light-harvesting complexes (LHC) were isolated from the unicellular alga Mantoniella squamata (Prasinophyceae) by sucrose-density centrifugation. Beside the major LHC (II), a photosystem I complex was obtained that could be dissociated into a photosystem I core complex and an associated LHC I. In contrast to other chlorophyll b-containing antennae, both LHC II as well as LHC I were observed to be identical with respect to the following features: the molecular weights, the isoelectric points and the retention behavior on anion-exchange chromatography of the apoproteins, the pigment content and the absorption and fluorescence spectra. We conclude from these results that Mantoniella contains only one homogenous population of LHC, which cooperate with both photosystems not on the basis of specific recognition but on the simple basis of statistical interaction. This is the first report of a chlorophyll b-containing light-harvesting system without any subpopulations: therefore, it is suggested that it arises from a most primitive type of chlorophyll b-containing chloroplast.  相似文献   

5.
Abstract The short-term adaptation of intact leaves to an increase in light intensity was studied by an analysis of chlorophyll fluorescence and oxygen evolution monitored by photoacoustics. An increase in light intensity led to an oxygen “gush”. This “gush” was followed by a large (up to 120%) biphasic increase in the yield of oxygen evolution characterized by a fast phase (T = 0.5–2 min) and a slow phase (T = 4–20 min). The fast phase of the increase in oxygen yield was coupled to a decrease of fluorescence, whereas the slow phase was accompanied by a parallel fluorescence increase. A comparison of fluorescence parameters with oxygen yield indicates that the slow phase of the increase in oxygen yield was coupled to an increase in the antenna size of photosystem II. The slow phase was not inhibited by the uncoupler Nigericin but it was absent in chlorophyll-b-less barley mutants dencient in the light harvesting chlorophyll a/b protein complex of photosystem II (LHC II). These experiments indicate that changes in the LHC II mediated energy distribution, which occur in the time-range of several minutes, are involved in the adaptation to changing light intensities. Moreover, electrophoretic analysis of 32P orthophosphate labeled leaf discs adapted to low and high light intensities suggests that the slow phase of the increase in oxygen evolution involves dephosphorylation of the 25 kDa polypeptide of LHC II, by a small extent of 12%. The trigger for the slow phase of the increase in oxygen yield does not involve the oxidation of the plastoquinone pool. It was found that in response to the increased light intensity, the plastoquinone pool became more reduced as judged by model calculations. Experiments with the uncoupler Nigericin suggest that the control of the slow phase of adaptation to increased light intensity was also not exerted by the pH gradient across the thylakoid membrane. The similarities between the adaptation to increased light intensity and the state II to state I transition suggest that both adaptation phenomena involve LHC II dephosphorylation possibly triggered by the cytochrome b6/f complex.  相似文献   

6.
Abstract— The short-term adaptation of intact leaves to an increase in light intensity was studied by an analysis of chlorophyll fluorescence and oxygen evolution monitored by photoacoustics. An increase in light intensity led to an oxygen “gush”. This “gush” was followed by a large (up to 120%) biphasic increase in the yield of oxygen evolution characterized by a fast phase (T = 0.5–2 min) and a slow phase (T = 4–20 min). The fast phase of the increase in oxygen yield was coupled to a decrease of fluorescence, whereas the slow phase was accompanied by a parallel fluorescence increase. A comparison of fluorescence parameters with oxygen yield indicates that the slow phase of the increase in oxygen yield was coupled to an increase in the antenna size of photosystem II. The slow phase was not inhibited by the uncoupler Nigericin but it was absent in chlorophyll-b-less barley mutants deñcient in the light harvesting chlorophyll a/b protein complex of photosystem II (LHC II). These experiments indicate that changes in the LHC II mediated energy distribution, which occur in the time-range of several minutes, are involved in the adaptation to changing light intensities. Moreover, electrophoretic analysis of 32P orthophosphate labeled leaf discs adapted to low and high light intensities suggests that the slow phase of the increase in oxygen evolution involves dephosphorylation of the 25 kDa polypeptide of LHC II, by a small extent of 12%. The trigger for the slow phase of the increase in oxygen yield does not involve the oxidation of the plastoquinone pool. It was found that in response to the increased light intensity, the plastoquinone pool became more reduced as judged by model calculations. Experiments with the uncoupler Nigericin suggest that the control of the slow phase of adaptation to increased light intensity was also not exerted by the pH gradient across the thylakoid membrane. The similarities between the adaptation to increased light intensity and the state II to state I transition suggest that both adaptation phenomena involve LHC II dephosphorylation possibly triggered by the cytochrome b6/f complex.  相似文献   

7.
Structure and dynamics of membrane-bound light-harvesting pigment-protein complexes (LHCs), which collect and transmit light energy for photosynthesis and thereby play an essential role in the regulation of photosynthesis and photoprotection, were identified and characterized using high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). LHCs from photosystem II (LHCII) were isolated from the thylakoid membrane of Arabidopsis thaliana leaves after light stress treatment using sucrose density gradient centrifugation, and separated by gel-filtration into LHCII subcomplexes. Using reversed-phase high-performance liquid chromatography and two-dimensional (2D) gel electrophoresis, the LHCII proteins, Lhcb1-6 and fibrillins, were efficiently separated and identified by FTICR-MS. Some of the LHCII subcomplexes were shown to migrate from photosystem II to photosystem I as a result of short-term adaptation to changes in light intensity. In the mobile LHCII subcomplexes, decreased levels of fibrillins and a modified composition of LHCII protein isoforms were identified compared to the tightly bound LHCII subcomplexes. In addition, FTICR-MS analysis revealed several oxidative modifications of LHCII proteins. A number of protein spots in 2D gels were found to contain a mixture of proteins, illustrating the feasibility of high-resolution mass spectrometry to identify proteins that remain unseparated in 2D gels even upon extended pH gradients.  相似文献   

8.
The organization of pigment-protein complexes into large chiral macrodomains was investigated in wild-type and chlorophyll b-less mutant thylakoid membranes of barley. The variations in the anomalous circular dichroism bands and in the angular-dependence of circular intensity differential scattering showed that in wild-type chloroplasts, the formation of macrodomains was governed by interactions of the light-harvesting chlorophyll alb complexes (LHCII). Two external factors could be identified which regulate the parameters of the anomalous circular dichroism signal: (i) electrostatic screening by divalent cations under conditions that favor membrane stacking and (ii) the osmotic pressure of the medium, which is suggested to affect the lateral interactions between complexes and influence the packing-density of particles. These two factors governed preferentially the negative and the positive anomalous circular dichroism signals, respectively. In the chlorina f-2 mutant thylakoid membranes, deficient in most chlorophyll b binding proteins, the formation of macrodomains which gave rise to the anomalous circular dichroism signals was still regulated by these same external factors. However, in the absence of major LHCII polypeptides the formation of macrodomains was apparently mediated by other complexes having weaker interaction capabilities. As a consequence, the size of the macrodomains under comparable conditions appeared smaller in the mutant than in the wild-type thylakoid membranes. Circular dichroism is a valuable probe for examining the long-range interactions between pigment-protein complexes which participate in the formation and stabilization of membrane ultrastruc-ture. A functional role of macrodomains in long-range energy migration processes is proposed.  相似文献   

9.
The changes in structural organization of the major light-harvesting chlorophyll a/b–protein complex of photosystem II (LHC II) at the level of trimeric subcomplexes were studied in spinach plants grown under low light conditions (50 μmol quanta m−2 s−1) and then acclimated to elevated irradiances. By monitoring photochemical quenching of fluorescence yield (qP), photosystem II (PS II) functional status was assessed in leaves of plants acclimated to a range of elevated irradiances. Three separate acclimative irradiances were selected for the experiments, reflecting: limiting light conditions (150 μmol quanta m−2 s−1), near to the inflexion point on the irradiance curve conditions (300 μmol quanta m−2 s−1) and an excessive light, causing a moderate stress in the form of down regulation of PS II (450 μmol quanta m−2 s−1). An immunoblot analysis showed that there was a clear decline in an abundance on chlorophyll basis of Lhcb1-3 apoproteins as an acclimative irradiance increased from 50 to 450 μmol quanta m−2 s−1, with Lhcb1 decreasing to a lesser extent than Lhcb2 and Lhcb3 (only at excessive irradiance). When analyzed by non-denaturing isoelectric focusing BBY membrane fragments (PSII-enriched, stacked thylakoid membranes) isolated from low light-grown plants were resolved into nine fractions, seven of which (labelled 3–9) were established by us previously [Jackowski and Pielucha, J. Photochem. Photobiol. B: Biol. 64 (2001) 45] to be LHC II subcomplexes representing mixed populations of closely similar trimers, comprising permutations of Lhcb1 and Lhcb2 (subcomplexes 3–7) or Lhcb1-3 (subcomplexes 8 and 9). A heterogeneity with regard to accumulation behaviour of LHC II subcomplexes in response to elevated irradiances was revealed. The subcomplexes 5 and 6 were accumulating at similar level, regardless of the light irradiance experienced. Another group consisting of the subcomplexes 3 and 4 (the most basic ones) showed a progressive increase in relative abundance with increasing an irradiance intensity whereas the subcomplexes 7–9 (the most acidic ones) exhibited a progressive decline in their relative abundance during an acclimation of spinach plants to elevated irradiances thus they may collectively represent an elevated irradiance-responsive subunit of LHCII.  相似文献   

10.
Laser-induced changes in the absorption spectra of isolated light-harvesting chlorophyll a/b complex (LHC II) associated with photosystem II of higher plants have been recorded under anaerobic conditions and at ambient temperature by using multichannel detection with sub-microsecond time resolution. Difference spectra (ΔA) of LHC II aggregates have been found to differ from the corresponding spectra of trimers on two counts: (i) in the aggregates, the carotenoid (Car) triplet–triplet absorption band (ΔA>0) is red-shifted and broader; and (ii) the features attributable to the perturbation of the Qy band of a chlorophyll a (Chla) by a nearby Car triplet are more pronounced, than in trimers. Aggregation, which is known to be accompanied by a reduction in the fluorescence yield of Chla, is shown to cause a parallel decline in the triplet formation yield of Chla; on the other hand, the efficiency (100%) of Chla-to-Car transfer of triplet energy and the lifetime (9.3 μs) of Car triplets are not affected by aggregation. These findings are rationalized by postulating that the antenna Cars transact, besides light-harvesting and photoprotection, a third process: energy dissipation within the antenna. The suggestion is advanced that luteins, which are buried inside the LHC II monomers, as well as the other, peripheral, xanthophylls (neoxanthin and violaxanthin) quench the excited singlet state of Chla by catalyzing internal conversion, a decay channel that competes with fluorescence and intersystem crossing; support for this explanation is presented by recalling reports of similar behaviour in bichromophoric model compounds in which one moiety is a Car and the other a porphyrin or a pyropheophorbide.  相似文献   

11.
The ionization (or basicity) constants (pKb) were determined for many 2‐substituted 4,6‐diamino‐s‐tri‐azines ( I ) by means of the electrometric titration. I includes 2‐alkoxy or aryloxy‐( Ia ), 2‐alkyl‐ or 2‐aryl‐( Ib ), and 2‐alkylamino‐ or 2‐arylamino‐4,6‐diamino‐s‐triazines ( Ic ). For the series with the same alkyl or aryl group, the order of the basicity was found to be Ic < Ib < Ia . A study was made of relationships between the pKb, values of I , and the substituent constants, σp, σm, σp+, σm+, σpO, σmo, σI, σn, and σ*. The Hammett relationships were observed between the pKa values of I, and the substituent constants σm, (or the combination ones, [0.97σm + 0.03σp] as well as another [0.77σI + 0.23σR]). The Taft relationships were also found between the pKa values of Ia , Ib , and Ic and the constants σ*, respectively. Furthermore, in the case of Ic a linear relationship was observed between the pKa values and Σσ8.  相似文献   

12.
Abstract— Growing wheat seedlings in the presence of BASF 13.338 [4-chloro-5-dimethylamino-2-phenyl-3(2H)pyridazinone], a PS II inhibitor of the pyridazinone group, brought about notable changes in the structure and functioning of photosynthetic apparatus. In BASF 13.338 treated plants, there was a decrease in the ratio of Chi a/Chl b, an increase in xanthophyll/carotene ratio and an increase in the content of Cyt b 559 (HP + LP). Chl/p700 ratio increased when measured with the isolated chloroplasts but not with the isolated PS I particles of the treated plants. The SDS-PAGE pattern of chloroplast preparations showed an increase in the CPII/CP I ratio. The F685/F740 ratio in the emission spectrum of chloroplasts at -196°C increased. The difference absorption spectrum of chloroplasts between the control and the treated plants showed a relative increase of a chlorophyll component with a peak absorption at 676 nm and a relative decrease of a chlorophyll component with a peak absorption at 692 nm for the treated plants. The excitation spectra of these chloroplast preparations were similar. Chloroplasts from the treated plants exhibited a greater degree of grana stacking as measured by the chlorophyll content in the 10 K pellet. The rate of electron transfer through photosystem II at saturating light intensity in chloroplast thylakoids isolated from the treated plants increased (by 50%) optimally at treatment of 125 μM BASF 13.338 as compared to the control. This increase was accompanied by an increase in (a) I50 value of DCMU inhibition of photosystem II electron transfer; (b) the relative quantum yield of photosystem II electron transfer; (c) the magnitude of C550 absorbance change; and (d) the rate of carotenoid photobleaching. These observations were interpreted in terms of preferential synthesis of photosystem II in the treated plants. The rate of electron transfer through photosystems I and through the whole chain (H2O → methyl viologen) also increased, due to an additional effect of BASF 13.338, namely, an increase in the rate of electron transfer through the rate limiting step (between plastoquinol and cytochrome f). This was linked to an enhanced level of functional cytochrome f. The increase in the overall rate of electron transfer occurred in spite of a decrease in the content of photosystem I relative to photosystem II. Treatment with higher concentrations (> 125 μM) of BASF 13.338 caused a further increase in the level of cytochrome f, but the rate of electron transfer was no greater than in the control. This was due to an inhibition of electron transfer at several sites in the chain.  相似文献   

13.
The biosynthesis of chlorophyll a and chlorophyll b from (2R,3R)‐ and (2S,3S)‐5‐amino[2,3‐14C2,2,3‐2H2,2,3‐3H2]levulinic acid in greening barley has established that chlorophyllide a oxidase catalyses the transformation of the methyl group at C(7) of chlorophyllide a into the CHO group of chlorophyllide b with the loss of HSi from the 7‐(hydroxymethyl)chlorophyllide intermediate.  相似文献   

14.
Polyclonal antibodies against four different apoproteins of either the chlorophyll (Chl) a/b light-harvesting antenna of photosystem I or II, or a chlorophyll-protein complex homologous to CP26 from Chlamydomonas reinhardtii, crossreact with11–13 thylakoid proteins of Chlamydomonas, Euglena gracilis and higher plants. The number of antigenically-related proteins correlates with the quantity of light-harvesting chlorophyll-protein complex (LHC) gene types that have been sequenced in higher plants. The antibodies also react specifically with Chi a/c-binding proteins of three diatoms and Coccolithophora sp. as determined by immunoblot and Ouchterlony assays. Four to six crossreacting proteins are observed in each chromophyte species and a functional role for some can be deduced by antibody reactivity. It appears that despite major differences in the structures of their pigment ligands, at least some domains of Chl-binding LHC apoproteins have been conserved during their evolution, possibly functioning in protein: protein, as opposed to pigment: protein, interactions in photosynthetic membranes.  相似文献   

15.
An extracellular exoinulinase was purified from the crude extract of Aspergillus fumigatus by ammonium sulfate precipitation, followed by successive chromatographies on DEAE-Sephacel, Sephacryl S-200, concanavalin A-linked amino-activated silica, and Sepharose 6B columns. The enzyme was purified 25-fold, and the specific activity of the purified enzyme was 171 IU/mg of protein. Gel filtration chromatography revealed a molecular weight of about 200 kDa, and native polyacrylamide gel electrophoresis (PAGE) showed an electrophoretic mobility corresponding to a molecular weight of about 176.5 kDa. Sodium dodecyl sulfate-PAGE analysis revealed three closely moving bands of about 66, 62.7, and 59.4 kDa, thus indicating the heterotrimeric nature of this enzyme. The purified enzyme appeared as a single band on isoelectric focusing, with a pI of about 8.8. The enzyme activity was maximum at pH 5.5 and was stable over a pH range of 4.0–9.5, and the optimum temperature for enzyme activity was 60°C. The purified enzyme retained 35.9 and 25.8% activities after 4 h at 50 and 55°C, respectively. The inulin hydrolysis activity was completely abolished with 1 mM Hg++, whereas EDTA inhibited about 63% activity. As compared to sucrose, stachyose, and raffinose, the purified enzyme had lower K m (0.25 mM) and higher V max (333.3 IU/mg) values for inulin.  相似文献   

16.
On irradiation with visible light in the presence of air, the zinc complex 1b of pyropheophorbide-a methyl ester ( 1a ) is photo-oxidized at the C(20) methine bridge yielding the corresponding 19-formyl-21H-bilin-1(23H)-one derivative 2 . Surprisingly, the cadmium complex Ic is cleaved, under the same conditions, at the C(5) methine bridge affording the same type of bilinone which has been recently characterized as an early product of chlorophyll catabolism in plants.  相似文献   

17.
Abstract— The action of Triton X-100 upon photosynthetic membranes which are devoid of carotenoids produces a small Photosystem I particle (HP700 particle) which is active in N ADP photoreduction and has a [Chl]/[P700] ratio of 30. The properties of the HP700 particle indicate that it is a reaction center complex which is served by an accessory complex containing the additional light-harvesting chlorophyll of Photosystem I as well as the cytochromes and plastoquinone. When Photosystem II particles obtained by the action of Triton X-100 are further washed with a solution 0.5 M in sucrose and 0.05 M in Tris buffer (pH 8.0), chlorophyll-containing material is released. After centrifugation, the supernatant contains about 1 per cent of the chlorophyll and contains three types of particles which can be separated by sucrose density gradient centrifugation. One of these particles, designated TSF-2b, has the same pigment composition as the original Photosystem II fragment, contains cytochrome 559, and shows Photosystem II activity (DCMU-sensitive diphenylcarbazide-supported photoreduction of 2,6-dichlorophenolindophenol). The other two particles (TSF-2a and TSF-2a′) have a [Chl a]/[Chl b] ratio of 8, have a low concentration of xanthophylls, and show a [Chl]/[Cyt 5591 ratio of about 20. Only the TSF-2a particle is active in the Photosystem II reaction described above. On the basis of these data, it is proposed that the Photosystem II unit consists of a reaction center complex which contains Chl a, Cyt 559, and an acceptor for the photochemical reaction. The reaction center complex would be served by an accessory complex which contains the light-harvesting pigments, Chl a. Chi b, and xanthophyils.  相似文献   

18.
The title complex, [Cu(C12H8N2)2]I, (I), has been crystallized in two polymorphic forms, both containing four‐coordinate copper. Both forms are orthorhombic, with form (Ia) crystallizing in the primitive space group Pban and form (Ib) in the c‐centred space group Ccca. In (Ia), the complex cation and the I anion both have 222 crystallographic symmetry, and in (Ib), the complex cation has approximate 222 symmetry, with the I counter‐ion distributed over three special positions.  相似文献   

19.
Abstract— Generation of the nonequilibrium distribution of excited vibrational modes stimulated by electronic energy relaxation in pigment-protein complexes of the light-harvesting antenna of some photosynthetic systems is discussed in this paper. It is shown that the simplest approach to this problem can be achieved by introducing a local temperature, which is a good parameter for describing the nonequilibrium distribution of the local vibrational modes of the pigment molecules and its nearest protein surroundings. Then the transient absorption kinetics is determined by the kinetics of the excitation relaxation as I well as the heating/cooling of the local vibrational modes. Experimentally, this process can be investigated in the i singlet-singlet annihilation conditions that create the i greatest amount of local heating. The systems under in-: vestigation are trimers of bacteriochlorophyll a contain- i ing pigment-protein complexes from the green sulfur i bacterium Chlorobium tepid urn (so-called FMO complexes) and aggregates of the light-harvesting complexes of photosystem II (LHC2) from higher plants containing chlorophyll alb. It was shown that at 77 K the heat redistribution kinetics in LHC2 is on the order of 3040 ps and in FMO it is approximately equal to 26 ps. The local heating effect at room temperature is less pronounced; however, by using longer pulses and at higher excitation energies (on the order of a magnitude higher), an additional kinetics of hundreds of ps, also related to the heating/cooling process, was observed.  相似文献   

20.
Abstract— The Emerson effect is demonstrated in the ferricyanide Hill reaction when the rates of steady-state oxygen evolution are measured in spinach chlorplast fragments exposed to red (650 nm) and far-red (700 nm) light of high but not saturating intensity. However, at very low light intensity, the Emerson effect could not be observed. These experiments suggest that ferricyanide can be reduced at two sites. At low light intensity, the rate at one site predominates and at this site one photochemical system is active. At high light intensity, however, the action at a site that is dependent on the cooperation of two photochemical systems predominates. The action spectra of the ferricyanide Hill reaction measured in the presence of an excess of 650 nm or in the excess of 700 nm light show two peaks: one at 650 nm due to chlorophyll b and the other around 675 nm due to chlorophyll a. The ratio of chlorophyll a to chlorophyll b peaks is about 1.4 when 650 nm background light is used; the same ratio is about 0.7 with 700 nm background light. The two pigment systems seem to contain both chlorophyll a and chlorophyll b but in different proportions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号