首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ryszard Wawryk 《哲学杂志》2013,93(12):1775-1787
The thermoelectric power, S(T), of USb2 and UBi2, which are tetragonal, uniaxial antiferromagnets below T N?=?202?K and 180.8?K, respectively, have been examined between 0.4?K and 300?K. The values of S(T), up to now known above 70?K for USb2 and unknown for UBi2, are positive along the a-axis for both compounds in the whole examined temperature range. The S(T) data for the c-axis (the easy magnetization axis) are positive near room temperature for USb2 and UBi2 but becomes negative below 120?K and 170?K, respectively, with two very deep minima in S(T) dependence for USb2. In the latter compound the Fermi surface, known from literature, is composed of the only cylindrical sheets that are slightly corrugated and parallel to the c-axis. UBi2, the Fermi surface of which is composed of one spherical and two cylindrical sheets, shows corresponding minima although less pronounced than those in USb2. Having at disposal the highest purity single crystals in comparison to those for which the resistivity, ρ(T), has been reported in literature, the ρ(T) anisotropy was re-examined for these two systems. Magnon and phonon contributions to their total electrical resistivity have been determined and the critical fluctuation behaviour of the resistivity near T N for both dipnictides has been analysed. Although the magnetic susceptibilities of UBi2 and USb2 reveal a similarity, their transport properties are significantly different due to the difference in the Fermi surface topology.  相似文献   

2.
The behavior of the electrical resistivity ρ(T), the superconducting transition temperature T c , and the upper critical field H c2(T) of a polycrystalline sample of YNi2B2C irradiated by thermal neutrons with the subsequent high-temperature isochronous annealing in the temperature interval T ann = 100–1000°C has been studied. It has been found that the irradiation of YNi2B2C with a fluence of 1019cm?2 leads to the suppression of the superconductivity. The final disordered state is reversible; i.e., the initial ρ(T), T c , and H c2(T) values are almost completely recovered upon annealing at up to T ann = 1000°C. The quadratic dependence ρ(T) = ρ0 + a 2 T 2 is observed for the sample in the superconducting state (T c = 5.5?14.5 K). The coefficient a 2 (proportional to the square of the electron mass m*) hardly changes. The form of the dependence of T c on ρ0 can be interpreted as the suppression of the two superconducting gaps, Δ1 and Δ21 ~ 2Δ2). The degradation rate of Δ1 is about three times higher than that of Δ2. The dependences dH c2/dT on ρ0 and T c may be described by the relations for a superconductor in the intermediate limit (the coherence length ζ0 is on the order of the electron mean free path l tr) under the assumption of a nearly constant electron density of states on the Fermi level N(E F). The observed behavior of T c obviously does not agree with the widespread opinion about the purely electron-phonon mechanism of superconductivity in the compounds of this type supposing the anomalous type of superconducting pairing.  相似文献   

3.
The effect of neutron-bombardment-induced atomic disorder on the galvanomagnetic properties of Sr2RuO4 single crystals has been experimentally studied in a broad range of temperatures (1.7–380 K) and magnetic fields (up to 13.6 T). The disorder leads to the appearance of negative temperature coefficients for both the in-plane electric resistivity (ρa) and that along the c axis (ρc), as well as the negative magnetoresistance Δρ, which is strongly anisotropic to the magnetic field orientation (Ha and Hc), with the easy magnetization direction along the c axis and a weak dependence on the probing current direction in the low-temperature region. The experimental ρa(T) and ρc(T) curves obtained for the initial and radiation-disordered samples can be described within the framework of a theoretical model with two conductivity channels. The first channel corresponds to the charge carriers with increased effective masses (~10m e , where m e is the electron mass) and predominantly electron-electron scattering, which leads to the quadratic temperature dependences of ρa and ρc. The second channel corresponds to the charge carriers with lower effective masses exhibiting magnetic scattering at low temperatures, which leads to the temperature dependence of the ρa, c(T) ∝ 1/T type.  相似文献   

4.
This paper reports on the results of an investigation into the effect of irradiation of the Bardeen-Cooper-Schriefer superconductor MgB2 by electrons with a mean energy ē ~ 10 MeV at low doses (0 ≤ Φt ≤ ~5 × 1016 cm?2) on the lattice parameters, the intensity and width of diffraction lines, the superconducting transition temperature T c , and the temperature dependence of the resistivity ρ(T) in the normal state. The results of structural investigations have revealed regularities in the defect formation in the magnesium and boron sublattices of the MgB2 compound as a function of the electron fluence. At the initial stage, irradiation leads to the formation of vacancies, originally in the magnesium sublattice and then in the boron sublattice. For fluences Φt ≥ ~1 × 1016 cm?2, vacancies are formed in both sublattices. The evolution of the electrical and physical properties [T c , ρ273 K, residual resistivity ratio RRR = ρ273 K50 K, parameters of the dependence ρ(T)] under electron irradiation is in agreement with the regularities revealed in the formation of radiation-induced defects in the crystal lattice of the MgB2 compound.  相似文献   

5.
王智河  曹效文  陈敬林  李可斌 《物理学报》1998,47(10):1720-1726
在0—7T磁场范围内,测量了不同测量电流密度下YBa2Cu3O7-δ外延薄膜的电阻温度关系.实验结果表明,临界温度以下,混合态的耗散电阻率能很好地用热激活磁通蠕动描述.有效钉扎势的电流密度关系遵守Zeldov等人提出的对数关系,有效钉扎势的温度和磁场关系遵守U∝(1-T/Tc)H关系,其中α=0.63,与热激活磁通点阵位错运动模型相一致,表明样品具有2D涡旋性质. 关键词:  相似文献   

6.
The angular dependence of the upper critical magnetic field was investigated in a wide range of temperatures in very high-quality Bi2Sr2CuO6+δ single crystals with critical temperature T c (midpoint) ? 9 K in magnetic fields up to 28 T. Although the typical value of the normal state resistivity ratio ρcab≈104, the anisotropy ratio H c2∥ab/H c2⊥ab of the upper critical fields is much smaller and shows an unexpected temperature dependence. A model based on strong anisotropy and small transparency between superconducting layers is proposed.  相似文献   

7.
We report on the synthesis and measurements of the temperature dependences of the resistivity ρ, the penetration depth λ, and the upper critical magnetic field Hc2, for polycrystalline samples of dodecaboride ZrB12 and diboride MgB2. We conclude that ZrB12 behaves as a simple metal in the normal state with the usual Bloch-Grüneisen temperature dependence of ρ(T) and with a rather low resistive Debye temperature TR = 280 K (to be compared to TR = 900 K for MgB2). The ρ(T) and λ(T) dependences for these samples reveal a superconducting transition in ZrB12 at Tc = 6.0 K. Although a clear exponential λ(T) dependence in MgB2 thin films and ceramic pellets was observed at low temperatures, this dependence was almost linear for ZrB12 below Tc/2. These features indicate an s-wave pairing state in MgB2, whereas a d-wave pairing state is possible in ZrB12. In disagreement with conventional theories, we found a linear temperature dependence, of Hc2(T) for ZrB12 (Hc2(0) = 0.15 T).  相似文献   

8.
We report on the electrical resistivity and far-infrared reflectance measurements of LaO1?xFxFeGe samples. Furthermore, we introduce a new method to probe the energy gap and determine its value. The onset transition temperature was 22.8 K for x = 0.13, and a clear anomaly was observed at 90 K in the ρ(T) curve for x = 0.11 with Tc = 20.6 K. We clearly observed the phonon-suppressed feature in reflectance spectra where F-doping caused a strong suppression of a peak at 200 cm?1. The energy gap above Tc, 2Δ = 2.10 meV, was determined from the measured spectra based on the changes in reflectivity by F-doping.  相似文献   

9.
Granular metal films (50–200,000 Å thick) were prepared by co-sputtering metals (Ni, Pt, Au) and insulators (SiO2, Al2O3), where the volume fraction of metal, x, was varied from x = 1 to x = 0.05. The materials were characterized by electron micrography, electron and X-ray diffraction, and measurements of composition, density and electrical resistivity at electric fields ε up to 106 V/cm and temperatures T in the range of 1.3 to 291 K. In the metallic regime (isolated insulator particles in a metal continuum) and in the transition regime (metal and insulator particles in a metal continuum) and in the transition regime (metal and insulator labyrinth structure) the conduction is due to percolation with a percolation threshold at x?0.5. Tunnelling measurements on superconductor-insulator-granular metal junctions reveals that the transition from the metallic regime to the dielectric regime (10–50 Å size isolated metal particles in an insulator continuum) is associated with the breaking up of a metal continuum into isolated metal particles. In the dielectric regime the temperature dependence of the low-field resistivity is given by ρL = ρo exp [2√(C/kT)], and the field dependence of the high-field, low-temperature resistivity is given by ρH = ρ∞ exp (εo/ε), where ρo, ρ∞, C, and εo are material constants. A simple theory based on the assumption that the ratio s/d (d-metal particle size and s-separation between particles) is a function only of composition yields expressions for ρ(ε, T) in excellent agreement with experiment. Furthermore, the theory predicts the experimental finding that the resistivity can be expressed in terms of a universal function of the reduced variables kT/C and ε/εo. The inter-relationship between all the important physical properties of granular metals and their structure is also discussed.  相似文献   

10.
We report on syntheses and electron transport properties of polycrystalline samples of diborides (AB2) with different transition metals atoms (A=Zr, Nb, Ta). The temperature dependence of resistivity, ρ(T), and ac susceptibility of these samples reveal a superconducting transition of ZrB2 with T c =5.5 K, while NbB2 and TaB2 have been observed to be nonsuperconducting up to 0.37K. H c2(T) is linear in temperature below T c , leading to a rather low H c2(0)=0.1 T. At T close to T c , H c2(T) demonstrates a downward curvature. We conclude that these diborides, as well as MgB2 samples, behave like simple metals in the normal state with usual Bloch-Grüneisen temperature dependence of resistivity and with Debye temperatures 280, 460, and 440 K for ZrB2, NbB2, and MgB2, respectively, rather than T 2 and T 3, as previously reported for MgB2.  相似文献   

11.
本文研究了非晶态(Fe1-xZrx)84.5B15.5(x=0,0.02,0.04,0.06,0.08,0.1,0.15)和Fe90-xBxZr10(x=0,4,10,16,20)合金的电阻率ρ与温度T的关系。实验结果表明,当Zr含量在0.02≤x≤0.08时,ρ-T曲线出现两个线性斜率,在略高于居里温度Tc处出现转折,在T关键词:  相似文献   

12.
We present Hall Effect and resistivity data which demonstrate that EuB6 is a degenerate semiconductor transforming into a metal or semimetal below the ferromagnetic ordering temperature, Tc = 13.7K. We also report an anomalously large, positive pressure dependence of Tc, (1/Tc)(ΔTc/ΔP) ? 4 × 10?2 kbar?1.  相似文献   

13.
We report measurements of the temperature dependence of the electrical resistivity, ρ(T), and magnetic pen-etration depth, λ(T), for polycrystalline samples of Eu0.5K0.5Fe2As2 with T c = 31 K. ρ(T) follows a linear temperature dependence above T c and bends over to a weaker temperature dependence around 150 K. The magnetic penetration depth, determined by radio frequency technique displays an unusual minimum around 4 K which is associated with short-range ordering of localized Eu3+ moments. The article is published in the original.  相似文献   

14.
The (Bi1/9Na2/3)(Mn1/3Nb2/3)O3 ceramics with perovskite structure were sintered. The XRD test proved that the samples are cubic (a?=?3.920?±?0.001?Å). Microstructure and atomic composition were determined with a SEM (JSM-5410) equipped with energy dispersion X-ray analyser (ISIS-300). The fluctuation in the chemical composition was found indicating on local disorder. Broadband dielectric spectroscopy in the range 10?1–3?·?107?Hz was applied within the range of 100–650?K. The real, ?′(f,?T), and imaginary, ?″(f,?T), parts of complex dielectric permitivity characteristics, both in the temperature and frequency domain, show relaxation processes partially covered by electric conductivity. At high temperatures the electric conductivity exhibits a thermally activated behaviour σ(f,?T)?∝?exp(?E a/kT) but the variable range hopping (VRH) dependence σ?∝?exp[?(T 0/T)1/4] is manifested at low temperatures. The derivatives technique in the frequency (??log??/??log?ω) and temperature (??log??/?T) domain enabled various relaxation processes to be distinguished. The data converted to electric modulus representation, M*(f,?T)?=?1/?*, exhibited clearly resolved relaxation peaks. The relaxation times obtained from the peaks position show a slightly non-Arrhenius temperature behaviour with the activation energy varying in 0.4–0.6?eV range and characteristic time of the electric conductivity relaxation of the order of 10?12?s. The relaxation times can be fitted at better accuracy with the VRH dependence where T 0 are of the order of 108?K. It is shown that the low frequency ac-conductivity converges to dc-conductivity and the relation σ(0)?~?ωm?~?τm ?1 typical for the disordered solids applies. The conduction current relaxation relationship behaves in accord with the VRH system: σdc?∝?(T/T 0)q (e 2/kT) ωc, where ωc?=?νph exp[?(T 0/T)1/4] is valid for the locally disordered (Bi1/9Na2/3)(Mn1/3Nb2/3)O3 compound.  相似文献   

15.
The superconducting transition temperature (Tc) and the temperature dependence of the normal state resistivity of the Ti1?xSbx system between Tc and 300 K have been studied. The Tc values are found to depend on the heat treatment of the samples. Below 40 K, all alloys show a T2 dependence of the resistivity. However, the sample with x = 0.53 is not superconducting and shows a different behaviour of the resistivity.  相似文献   

16.
The temperature dependence of the electrical resistivity, the thermal conductivity and the thermopower of the cubic isostructural (GdxY1–x)Al2 series will be presented. The magnetic properties of this system are characterized by the existence of ferromagnetism for Gd concentrations x>0.3 while for low Gd contents cluster and spinglass behaviour is observed. The spin dependent scattering contribution to the transport phenomena has been obtained by comparing the experimental data of the magnetic compounds with those of the isostructural nonmagnetic YAl2. For the ferromagnetic concentration range and forT>T c (T c =Curie temperature) we revealed a temperature independent contribution to the electrical resistivity, a contribution with a temperature variation of 1/T to the thermal resistivity and a linear temperature dependence of this part to the thermopower. These results are in good agreement with the temperature dependence calculated by solving the linearized Boltzmann equation for this type of scattering processes.  相似文献   

17.
Abstract

Resistance and thermopower measurements have been made on a series of compounds, YBa2Cu3- x Zn x O7-y, with x = 0.025, 0.05, 0.1, 0.15 and 0.2. The superconducting transition temperature decreases as the zinc concentration increases. In a range of temperatures below TM , the mid point of the transition, the resistance shows an exponential temperature dependence fitting the phenomenological formula proposed by Ausloos et al. From the plot of logarithm of resistivity vs. (TM ? T) 1/2/T, one deduces a value of the average dimension of the Josephson junction to be a few tens of Å, suggesting the microtwin boundaries to be the location of the junctions. The thermopower shows a peak always just above Tc . This conclusively shows that phonon drag is not the cause of the peak. The temperature dependence of the thermopower appears to resemble closely the earlier observations of Srinivasan et al. on yttrium barium copper oxide. Single-particle tunneling measurements carried out for two concentrations, x = 0 and 0.05, appear to indicate that the energy gap parameter scales with Tc , and 2Δ/kTc has an approximate value of 5.5.  相似文献   

18.
The temperature dependences of resistivities ρab in the ab plane and ρc along the c axis have been studied for single-crystal Nd2 ? x CexCuO4 + δ (x = 0.12, 0.15, 0.17, 0.20) films with (001) and (1 $\bar 1$ 0) orientations. The superconducting transition temperature and anisotropy coefficient are shown to be maximal in optimally annealed samples (the oxygen content is close to the stoichiometric content, δ → 0). A combination of the metallic behavior of the ρab(T) dependence and the nonmetallic behavior of the ρc(T) dependence for the optimally annealed samples is an intrinsic property of the substance and an indication of the fact that the system is quasi-two-dimensional. This layered quasi-two-dimensional system is an Anderson dielectric with a strongly anisotropic localization radius (R loc ab ? R loc c ). An increase in the oxygen content and, hence, in the degree of disorder in the Nd2 ? x CexCuO4 + δ system is found to decrease the resistivity anisotropy coefficient. Thus, a disorder-induced Anderson transition takes place in this quasi-two-dimensional system.  相似文献   

19.
The thermal conductivity (κ) of single crystals of tetragonal uniaxial antiferromagnets USb2 (T N = 202 K) and UBi2 (T N = 180.8 K) has been measured along the a-axis (κa ) over the temperature range from 0.5 to 300 K and along the c-axis (κc ) from 0.5 to 70 K. The as-grown samples have residual resistivity ratio (RRR) values of about 500–600 and 100–150 for UBi2 and USb2, respectively. The anisotropy of the thermal conductivity (κa (T)/κc (T) ~ 5) and the low-T Lorenz ratios are discussed in relation to Fermi surface topology for both compounds.  相似文献   

20.
The temperature dependence of the electrical resistivity ρ(T) for ceramic samples of LaMnO3 + δ (δ = 0.100–0.154) are studied in the temperature range T = 15–350 K, in magnetic fields of 0–10 T, and under hydrostatic pressures P of up to 11 kbar. It is shown that, above the ferromagnet-paramagnet transition temperature of LaMnO3 + δ, the dependence ρ(T) of this compound obeys the Shklovskii-Efros variable-range hopping conduction: ρ(T) = ρ0(T)exp[(T 0/T)1/2], where ρ0(T) = AT 9/2 (A is a constant). The density of localized states g(?) near the Fermi level is found to have a Coulomb gap Δ and a rigid gap γ(T). The Coulomb gap Δ assumes values of 0.43, 0.46, and 0.48 eV, and the rigid gap satisfies the relationship γ(T) ≈ γ(T v)(T/T v)1/2, where T v is the temperature of the onset of variable-range hopping conduction and γ(T v) = 0.13, 0.16, and 0.17 eV for δ = 0.100, 0.125, and 0.154, respectively. The carrier localization lengths a = 1.7, 1.4, and 1.2 Å are determined for the same values of δ. The effect of hydrostatic pressure on the variable-range hopping conduction in LaMnO3 + δ with δ = 0.154 is analyzed, and the dependences Δ(P) and γv(P) are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号