首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of β,γ‐unsaturated ketones were isomerized to their corresponding α,β‐unsaturated ketones by the introduction of DABCO in iPrOH at room temperature. The endo‐cyclic double bond (β,γ‐position) on ketone was rearranged to exo‐cyclic double bond (α,β‐position) under the reaction conditions.  相似文献   

2.
Photochemistry of tricyclic β, γ-γ′, δ′-unsaturated ketones The easily available tricyclic ketone 1 (cf. Scheme 1) with a homotwistane skeleton yielded upon direct irradiation the cyclobutanone derivative 3 by a 1,3-acyl shift. Further irradiation converted 3 into the tricyclic hydrocarbon 4 . However, acetone sensitized irradiation of 1 gave the tetracyclic ketone 5 by an oxa-di-π-methane rearrangement. Again with acetone as a sensitizer the ketone 5 was quantitatively converted to the pentacyclic ketone 6 . The conversion 5 → 6 represents a novel photochemical 1,4-acyl shift. The possible mechanisms are discussed (see Scheme 7). The tricyclic ketone 2 underwent similar types of photoreactions as 1 (Scheme 2). Unlike 5 the tetracyclic ketone 9 did not undergo a photochemical 1,4-acyl shift. The epoxides 10 and 14 derived from the ketones 1 and 2 , respectively, underwent a 1,3-acyl shift upon irradiation followed by decarbonylation, and the oxa-di-π-methane rearrangement (Schemes 3 and 4). The diketone 18 derived from 1 behaved in the same way (Scheme 5). The tetracyclic diketone 21 cyclized very easily to the internal aldol product 22 under the influence of traces of base (Scheme 5). Upon irradiation the γ, δ-unsaturated ketone 24 underwent only the Norrish type I cleavage to yield the aldehyde 25 (Scheme 6).  相似文献   

3.
The photolysis and thermolysis of the Cyclopropyl silyl ketones 3, 4 , and 5 are described. On n,π* excitation, the silyl ketones 3 and 4 undergo a Norrish-type-II reaction involving γ-H abstraction, cyclopropyl ring cleavage followed by retro-enolization to the acylsilanes 6 and (E/Z)- 12 , respectively. As a common product of 3 and 4 , the dihydrofuran 7 is formed via the alternative C(α)-C(β) cleavage of the cyclopropyl moiety. Compounds 6 , 7 , and (E/Z)- 12 are new types of acylsilane photoproducts. The irradiation of acylsilane 5 gave the analogous dihydrofuran 15 as the only product. On photolysis of 3 and 4 , products 8A + B and 13A + B , derived from a siloxy carbene intermediate, were found as well. On thermolysis of 3 and 4 , the acylsilanes 6 (80%), and (E)- 12 (33%) and (Z)- 12 (34%), respectively, are formed as the only products. Their formation may occur via a [1, 5] sigmatropic H-shift. The thermolysis of 5 gave the diene 16 whose formation can be explained by insertion of a siloxycarbene into the neighboring cyclopropane leading to the cyclobutene 28 as thermally unstable intermediate.  相似文献   

4.
The Syntheses and the photolyses of the acylsilane 1 and the corresponding methyl ketone 2 are described. On n,π*-excitation, the silyl ketone 1 as well as the methyl ketone 2 undergo a Norrish type II reaction involving γ-H-abstraction and fragmentation to the diene 12 , and acetone ( 20 ) or the acylsilane 26 , respectively. The methyl ketone 2 , but not the acylsilane 1 , isomerizes to cyclobutanols ( 21A - D ). Additionally, compound 1 shows photochemical behavior typical of acylsilanes undergoing rearrangement to the siloxycarbene intermediate c . Insertion of c into the O? H-ond of the enol 28 leads to compound 13 . Initial trapping of the siloxycarbene c by H2O, however, gives rise to the formation of compounds 16 – 18 . As minor photolysis products of 1 , compounds 14 and (Z)- 15 were formed; however, on vapor phase thermolysis (520°) of 1 , compounds 14 and (E/Z)- 15 were obtained in 92% combined yield. To a small extent the acylsilane 1 also undergoes Norrish type I cleavage leading to the acid 19 .  相似文献   

5.
N‐Methyl β‐amino acids are generally required for application in the synthesis of potentially bioactive modified peptides and other oligomers. Previous work highlighted the reductive cleavage of 1,3‐oxazolidin‐5‐ones to synthesise N‐methyl α‐amino acids. Starting from α‐amino acids, two approaches were used to prepare the corresponding N‐methyl β‐amino acids. First, α‐amino acids were converted to N‐methyl α‐amino acids by the so‐called ‘1,3‐oxazolidin‐5‐one strategy’, and these were then homologated by the Arndt–Eistert procedure to afford N‐protected N‐methyl β‐amino acids derived from the 20 common α‐amino acids. These compounds were prepared in yields of 23–57% (relative to N‐methyl α‐amino acid). In a second approach, twelve N‐protected α‐amino acids could be directly homologated by the Arndt–Eistert procedure, and the resulting β‐amino acids were converted to the 1,3‐oxazinan‐6‐ones in 30–45% yield. Finally, reductive cleavage afforded the desired N‐methyl β‐amino acids in 41–63% yield. One sterically congested β‐amino acid, 3‐methyl‐3‐aminobutanoic acid, did give a high yield (95%) of the 1,3‐oxazinan‐6‐one ( 65 ), and subsequent reductive cleavage gave the corresponding AIBN‐derived N‐methyl β‐amino acid 61 in 71% yield (Scheme 2). Thus, our protocols allow the ready preparation of all N‐methyl β‐amino acids derived from the 20 proteinogenic α‐amino acids.  相似文献   

6.
Photochemistry of Conjugated δ-Keto-enones and β,γ,δ,?-Unsaturated Ketones On 1π,π*-excitation the δ-keto-enones 5–8 are isomerized to compounds B ( 18 , 22 , 26 , 28 ) via 1,3-acyl shift and to compounds C ( 19 , 23 , 27 , 29 ) via 1,2-acyl shift, whereas the β,γ,δ,?-unsaturated ketone 9 gives the isomers 32 and 33 by 1,2-and 1,5-acyl shift, respectively. Furthermore, isomerization of 6 to 24 , dimerization of 8 to 30 and addition of methanol to 8 ( 8 → 31 ) is observed. Unlike 7 and 8 the acyclic ketones 5 , 6 and 9 undergo photodecarbonylation on 1π,π*-excitation ( 5 → 20 , 21 ; 6 → 20 , 25 ; (E)- 9 → 35–38 ). Evidence is given, that the conversion to B as well as the photodecarbonylation of 5,6 and 9 arise from an excited singulet state, but the conversion to C as well as the dimerization of 8 from the T1-state.  相似文献   

7.
The Photochemistry of Conjugated γ,δ-Epoxy-ene-carbonyl Compounds of the Ionone Series: UV.-Irradiation of α,β-Unsaturated ε-Oxo-γ,δ-epoxy Compounds and Investigation of the Mechanism of the Isomerization of Epoxy-enones to Furanes On 1n, π*-excitation (λ ≥ 347 nm; pentane) of the enonechromophore of 3 , three different reactions are induced: (E/Z)-isomerization to give 13 (7%), isomerization by cleavage of the C(γ)–C(δ) bond to yield the bicyclic ether 14 (36%) and isomerization by cleavage of the C(γ)? O bond to give the cyclopentanones 15 (13%) and 16 (11%; s. Scheme 2). On 1π, π*-excitation (λ = 254 nm; acetonitrile) 13 (14%), 15 (6%), and 16 (6%) are formed, but no 14 is detected. In contrast, isomerization by cleavage of the C(δ)? O bond to give the cyclopentanone 17 (23%) is observed. The reaction 3 → 17 appears to be the consequence of an energy transfer from the excited enone chromophore to the cyclohexanone chromophore, which then undergoes β-cleavage. Irradiation of 4 with light of λ = 254 nm (pentane) yields the analogous products 20 (18%), 21 (9%), 22 (7%), and 24 (7%; s. Scheme 2). Selective 1n, π*-excitation (λ ≥ 280 nm) of the cyclohexanone chromophore of 4 induces isomerization by cleavage of the C(δ)? O bond to give the cyclopentanones 23 (9%) and 24 (44%). Triplet-sensitization of 4 by excited acetophenone induces (E/Z)-isomerization to provide 20 (12%) and isomerization by cleavage of the C(δ)? O bond to yield 21 (26%) and 22 (20%), but no isomerization via cleavage of the C(δ)? O bond. It has been shown, that the presence of the ε;-keto group facilitates C(γ)? C(δ) bond cleavage to give a bicyclic ether 14 , but hinders the epoxy-en-carbonyl compounds 3 and 4 from undergoing cycloeliminations. The activation parameters of the valence isomerization 13 → 18 , a thermal process, have been determined in polar and non-polar solvents by analysing the 1H-NMR. signal intensities. The rearrangement proceeds faster in polar solvents, where the entropy of activation is about ?20 e.u. Opening of the epoxide ring and formation fo the furan ring are probably concerted.  相似文献   

8.
Enantiomerically pure α‐oxo diazo compounds derived from (S)‐proline were used for 1,3‐dipolar cycloaddition with aryl and hetaryl thioketones, as well as with cycloalkanethiones. Whereas the reactions with hetaryl thioketones in boiling THF yield α,β‐unsaturated ketones via a cascade of cycloaddition, 1,3‐dipolar electrocyclization, and desulfurization, the analogous reactions with thiobenzophenone and cycloalkanethiones result in the formation of 1,3‐oxathiole derivatives. In the latter case, the 1,5‐dipolar electrocyclization of the intermediate thiocarbonyl ylide is the key step of the reaction sequence. In all cases, the isolated products are optically active, i.e., the multistep processes occur with retention of the stereogenic center incorporated via the use of (S)‐proline as the precursor of the diazo compounds.  相似文献   

9.
A homogeneous catalyst, 3-benzyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazolium chloride, for addition of aldehydes to activated double bond, was attached to 20% cross-linked polystyrene-divinylbenzene copolymer. The attached catalysts could be easily removed from the reaction mixture. Polymer-attached thiazolium salts in the presence of triethylamine are active catalysts for addition of aromatic and aliphatic aldehydes to α,β-unsaturated ketones to yield γ-diketones.  相似文献   

10.
The syntheses, photolyses, and thermolyses of the α,β-unsaturated silyl ketones (E/Z)-7, (E)- 8 , and (E)- 9 are described. On n,π*-excitation (λ > 347 mm), the aforementioned compounds undergo (E/Z)-isomerization followed by γ-H abstraction. The intermediate enols are trapped intermolecularly by siloxycarbenes leading to the dimeric acetals 27A + B, 30A + B , and 31A + B . In addition, the acylsilanes (E/Z)- 7 undergo photoisomerization by δ-H abstraction furnishing the acylsilanes 29A + B . Flash vacuum thermolyses (FVT) of (E/Z)- 7 , (E/Z)- 8 , and (E)- 9 give rise to intramolecular reactions of the siloxycarbene intermediates. Thus, FVT (520°) of (E)- and (Z)- 7 selectively leads to the enol silyl ethers 32 and (E)- 33 , respectively, arising from carbene insertion into an allylic C–-H bond. FVT of (E/Z)- 8 (560°) and (E)- 9 (600°) affords the trienol silyl ethers 34A + B and the cyclic silyl ethers 37A + B , respectively, which are formed by CH insertion of the siloxycarbenes. As further products of (E)- 8 and (E)- 9 , the bicyclic enol ethers 35 and 36 are formed, presumably via siloxycarbene addition to the cyclohexene C?C bond.  相似文献   

11.
Acid-catalyzed methanolysis of N-hydroxy-α-oxobenzeneethanimidoyl chloride ( 1 ), a 2-(hydroxyimino)-1-phenylethan-1-one derivative obtained in one step from acetophenone, leads to a constant ratio of methyl α-oxobenzeneacetate ( 2 ) and methyl α-(hydroxyimino)benzeneacetate ( 3 ). 13C(α) Labelled [13C]- 1 affords 13C(α) labelled [13C]- 3 , thus discarding the hypothesis of its formation via 1,2-arene migration. The reported sequence opens a novel approach to phenylglyoxylic and mandelic acid esters (=α-oxobenzeneacetic and α-hydroxybenzeneacetic acid esters), from acetophenone. The molecular structures of 1 and 3 were determined by X-ray structure analysis and compared with previously reported crystallographic data of α-oxo-oximes (=α-(hydroxyimino) ketones) 4 and 6 – 8 . The unique stereoelectronic characteristics of the α-oxo-oxime moiety are discussed. All α-oxo-oximes share the following structural characteristics: (E)-configuration of the oxime C=N−OH bond (i.e. OH and C=O trans), the s-trans conformation of the oxo and imino moieties about the C(α)-C(=NOH) single bond, and intermolecular H-bonding. They differ from the isostructural β-diketone enols by the absence of resonance-assisted intramolecular H-bonding.  相似文献   

12.
The reaction of Cα,O-Dilithiooximes 2 and α-chloroketones afforded 5-(hydroxymethyl)-Δ2-soxazolines 4 . α,β-Unsaturated aldehydes and ketones reacted with 2 to give the corresponding acyclic 1,2-addition products 5 . The latter were cyclized with phosphorus pentoxide to 5-vinyl-Δ2-isoxazolines 6 .  相似文献   

13.
Irradiation in the n→π* absorption band of the α,β-unsaturated γ,δ-epoxyketone 5 in ethanol at ?65° exclusively afforded the rearranged ene-dione 13 , whereas at + 24° under otherwise unchanged reaction conditions or upon triplet sensitization with Michler's ketone and with acetophenone at + 24° essentially identical mixtures of 13 (major product), 14 , and 15 were obtained. Selective π→π* excitation of 5 at ?78° and + 24° led to similar product patterns. The 9β,10β-epimeric epoxyketone 7 selectively isomerized to 14 and 15 at + 24° and n → π* or π → π* excitation. Neither the epoxyketones 5 and 7 nor the photoproducts 13–15 were photochemically interconverted. In separate photolyses each of the latter gave the double bond isomers 16 , 18 , and 19 , respectively. Cleavage of 13 to the dienone aldehyde 17 competed with the double bond shift ( → 16 ) when photolyzed in alcoholic solvents instead of benzene. The selective transformations 5 → 13 (at ?65° and n → π* excitation) and 7 → 14 + 15 are attributed to stereoelectronic factors facilitating the skeletal rearrangements of the diradicals 53 and 55 , the likely primary photoproducts resulting from epoxide cleavage in the triplet-excited compounds 5 and 7 , via the transition states 54 , 56 , and 57 . The loss of selectivity in product formation from 5 at higher temperature and n → π* excitation or triplet sensitization is explicable in terms of radical dissociation into 58 and 59 increasingly participating at the secondary thermal transformations of 53 . The similar effect of π → π* excitation even at ?78° indicates that some of the π,π* singlet energy may become available as thermal activation energy. It is further suggested that the considerably lesser ring strain in 14 and 15 , as compared with 13 , is responsible that selectivity in product formation from 7 is maintained also at +24° and at π → π* excitation.  相似文献   

14.
π, π*-Induced Photocleavage of γ, δ-Epoxy-eucarvone . On 1π, π*-excitation 1 undergoes cleavage of the C, C-oxirane bond ( 1 → c ) and isomerizes to the bicyclic dihydrofurane compound 5 . In addition, 1 shows photocleavage of the C (γ), O-oxirane bond ( 1 → d ) and gives the isomers 2, 3, 6, 7 and 8. Furthermore, the cyclohexenone 9 and the cyclohexene-1, 4-dione 10 are formed presumably via an intermediate 13 , which could also arise from d. Besides these products the compounds 11 and 12 are obtained, which are photoproducts of 2 .  相似文献   

15.
N-Fmoc-Protected (Fmoc = (9H-fluoren-9-ylmethoxy)carbonyl) β-amino acids are required for an efficient synthesis of β-oligopeptides on solid support. Enantiomerically pure Fmoc-β3-amino acids β3: side chain and NH2 at C(3)(= C(β)) were prepared from Fmoc-protected (S)- and (R)-α-amino acids with aliphatic, aromatic, and functionalized side chains, using the standard or an optimized Arndt-Eistert reaction sequence. Fmoc-β2- Amino acids (β2 side chain at C(2), NH2 at C(3)(= C(β))) configuration bearing the side chain of Ala, Val, Leu, and Phe were synthesized via the Evans' chiral auxiliary methodology. The target β3-heptapeptides 5–8 , a β3- pentadecapeptide 9 and a β2-heptapeptide 10 were synthesized on a manual solid-phase synthesis apparatus using conventional solid-phase peptide synthesis procedures (Scheme 3). In the case of β3-peptides, two methods were used to anchor the first β-amino acid: esterification of the ortho-chlorotrityl chloride resin with the first Fmoc-β-amino acid 2 (Method I, Scheme 2) or acylation of the 4-(benzyloxy)benzyl alcohol resin (Wang resin) with the ketene intermediates from the Wolff rearrangement of amino-acid-derived diazo ketone 1 (Method II, Scheme 2). The former technique provided better results, as exemplified by the synthesis of the heptapeptides 5 and 6 (Table 2). The intermediate from the Wolff rearrangement of diazo ketones 1 was also used for sequential peptide-bond formation on solid support (synthesis of the tetrapeptides 11 and 12 ). The CD spectra of the β2- and β3-peptides 5 , 9 , and 10 show the typical pattern previously assigned to an (M) 31 helical secondary structure (Fig.). The most intense CD absorption was observed with the pentadecapeptide 9 (strong broad negative Cotton effect at ca. 213 nm); compared to the analogous heptapeptide 5 , this corresponds to a 2.5 fold increase in the molar ellipticity per residue!  相似文献   

16.
The reaction of a {W(CO)5}‐stabilized phosphinophosphonate 1 , (CO)5WPH(Ph)? P(O)(OEt)2, with ethynyl‐ ( 2 a – f ) and diethynylketones ( 7 – 11 , 18 , and 19 ) in the presence of lithium diisopropylamide (LDA) is examined. Lithiated 1 undergoes nucleophilic attack in the Michael position of the acetylenic ketones, as long as this position is not sterically encumbered by bulky (iPr)3Si substituents. Reaction of all other monoacetylenic ketones with lithiated 1 results in the formation of 2,5‐dihydro‐1,2‐oxaphospholes 3 and 4 . When diacetylenic ketones are employed in the reaction, two very different product types can be isolated. If at least one (Me)3Si or (Et)3Si acetylene terminus is present, as in 7 , 8 , and 19 , an anionic oxaphosphole intermediate can react further with a second equivalent of ketone to give cumulene‐decorated oxaphospholes 14 , 15 , 24 , and 25 . Diacetylenic ketones 10 and 11 , with two aromatic acetylene substituents, react with lithitated 1 to form exclusively ethenyl‐bridged bisphospholes 16 and 17 . Mechanisms that rationalize the formation of all heterocycles are presented and are supported by DFT calculations. Computational studies suggest that thermodynamic, as well as kinetic, considerations dictate the observed reactivity. The calculated reaction pathways reveal a number of almost isoenergetic intermediates that follow after ring opening of the initially formed oxadiphosphetane. Bisphosphole formation through a carbene intermediate G is greatly favored in the presence of phenyl substituents, whereas the formation of cumulene‐decorated oxaphospholes is more exothermic for the trimethylsilyl‐containing substrates. The pathway to the latter compounds contains a 1,3‐shift of the group that stems from the acetylene terminus of the ketone substrates. For silyl substituents, the 1,3‐shift proceeds along a smooth potential energy surface through a transition state that is characterized by a pentacoordinated silicon center. In contrast, a high‐lying transition state TS(E′–F′)R=Ph of 37 kcal mol?1 is found when the substituent is a phenyl group, thus explaining the experimental observation that aryl‐terminated diethynylketones 10 and 11 exclusively form bisphospholes 16 and 17 .  相似文献   

17.
金属铟参与醛衍生的N-酰基腙 1a-1q,4a-4g与3-溴-3,3-二氟丙烯 2 的反应,分别高效得到α, α-二氟高烯丙基肼 3a-3q,5a-5g。该反应条件温和,操作简便。硝基,酚羟基,苄氧基,α, β-不饱和醛的碳-碳双键等官能团对该反应具有良好的官能团兼容性。通过用锌粉代替铟粉, 酮衍生的N-酰基腙 6a-6d 也能发生偕二氟烯丙基化反应,以中等产率得到α, α-二氟高烯丙基肼 7a-7d。裂解肼3a的 N-N键顺利得到偕二氟高烯丙基胺 8,化合物 8 经丙烯酰化,随后进行RCM关环反应,可以方便的转化为偕二氟-γ-取代α, β-不饱和内酰胺 11。  相似文献   

18.
α-Silylated ketones (S)? 2 (ee ≥ 98%), easily available through silylation or silylation/alkylation from ketones 1 using the (?)-(S)-1-amino-2-(methoxymethyl)pyrrolidine (SAMP)?/(+)-(R)-1-amino-2-(methoxymethyl)pyrrolidine (RAMP)-hydrazone method, are oxidized to give α-hydroxy-ketones (R)? 5 of high enantiomeric purity (ee ≥ 98%) and in good overall yields (51-70%). The key step of the procedure is the silicon-directed diastereoselective oxidation of the corresponding silyl enol ethers of (S)? 2 , with m-chloroperbenzoic acid or 3-phenyl-2-(phenylsulfonyl)oxaziridine, followed by flash chromatography and desilylation.  相似文献   

19.
The reaction of various 5-iodopyrimidines with α,β-unsaturated ketones in the presence of palladium diacetate-triphenylphosphine complex in triethylamine are investigated. In the reaction of 2,4-dialkoxy(or alkylthio)-6-methyl-5-iodopyrimidine the addition of pyrimidine to the carbon? carbon double bond of α,β-unsaturated ketones occurs. In the case of other pyrimidines, according to the decrease of steric hindrance at the 5-position on the pyrimidine ring, the ratio of conjugate addition product was decreased and the usual olefinic substituted product was increased.  相似文献   

20.
Various fluorinated 3‐oxo ester/1,3‐diketones were reacted with carbonyl compounds, in presence of piperidine and under microwave irradiation, to afford (E)‐α,β‐unsaturated esters and ketones in good yields. The systematic study reveals that the reaction proceeded through the formation of aldol adduct. The method provides a new and simple way for C,C bond formations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号