首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of base hydrolysis of (αβS) (salicylato) (tetraethylenepentamine) cobalt(III) have been investigated in aquo-organic solvent media at 15.0 < t, °C < 40.0, and I = 0.10 mol dm (ClO4?) using propane-2-ol (?70% v/v), t-butanol (?60% v/v), acetone (?70% v/v), acetonitrile (?50% v/v), and ethylene glycol (?70% v/v) as cosolvents. Both the spontaneous and base-catalyzed hydrolysis of the phenoxide species [(tetren)CoO2CC6H4O]+ were appreciably accelerated by the cosolvents PriOH, ButOH, Me2CO, and MeCN. On the contrary the base hydroylsis (k2) was retarded while spontaneous aquation (k1) was accelerated to a small extent with increased EG content. Variation of log k1 and log k (k = k2 at I = 0) with mole fraction (X0.S) or reciprocal of the relative permitivity (Ds?1) of the media were nonlinear. The transfer free energy of the transition state relative to that of the initial state of the substrate for transfer of species from water to mixed solvents also varied nonlinearly with X0.S, or Ds?1 indicating solvent specificity. The activation parameters, ΔH and ΔS varied nonlinearly with solvent composition exhibiting extrema. The preferential solvation and solvent structural effects mediated the kinetics and energetics of the reaction. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The kinetics of base hydrolysis of (αβ S)-(o -methoxy benzoato) (tetraethylenepentamine)cobalt(III) obeyed the rate law: kobs = kOH[OH?], in the range 0.05 ? [OH?]T, mol dm?3 ? 1.0, I = 1.0 mol dm?3, and 20.0–40.0°C. At 25°C, kOH = 13.4 ± 0.4 dm3 mol?1 s?1, ΔH = 93 ± 2 kJ mol?1 and ΔS = 90 ± 5 JK?1 mol?1. Several anions of varying charge and basicity, CH3CO2?, SO32?, SO42?, CO32?, C2O42?, CH2(CO2)22?, PO43?, and citrate3? had no effect on the rate while phthalate2?, NTA3?, EDTA4?, and DTPA5? accelerated the process via formation of the reactive ion pairs. The anionic (SDS), cationic (CTAB), and neutral (Triton X-100) micelles, however, retarded the reaction, the effect being in the order SDS> CTAB > Triton X-100. The importance of electrostatic and hydrophobic effects of the micelles on the selective partitioning of the reactants between the micellar and bulk aqueous pseudo-phases which control the rate are discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
The kinetics of reversible complexation of oxalatopentaammine cobalt(III) with Ni2+ has been investigated in MeOH + water media (0–50 (v/v) % MeOH) at 15.0–35.0°C and I = 0.10 mol dm?3. Analysis of rate data indicates that the monobonded complex [(NH3)5 · CoOCOCO2Ni]3+ in which Ni2+ is bound to the end carboxylate group is the possible reaction intermediate. The formation and dissociation rates of such a species are rate limiting for the overall formation and dissociation of the binuclear species, in which Ni2+ is chelated by the oxalate moiety. The rate and activation parameters for formation and dissociation of the binuclear species are moderately solvent sensitive and solvent structural effects are discernible in the nonlinear variations of ΔH and ΔS with solvent composition. The log kr vs. Grunwald Winstein parameter (Y) plot for the dissociation of the binuclear species is markedly nonlinear.  相似文献   

4.
The kinetics of the interaction of adenosine with cis‐[Pt(cis‐dach)(OH2)2]2+ (dach = diaminocyclohexane) was studied spectrophotometrically as a function of [cis‐[Pt(cis‐dach)(OH2)2]2+], [adenosine], and temperature at a particular pH (4.0), where the substrate complex exists predominantly as the diaqua species and the ligand adenosine exists as a neutral molecule. The substitution reaction shows two consecutive steps: the first is the ligand‐assisted anation followed by a chelation step. The activation parameters for both the steps have been evaluated using Eyring equation. The low negative value of ΔH1 (43.1 ± 1.3 kJ mol?1) and the large negative value of ΔS1 (?177 ± 4 J K?1 mol?1) along with ΔH2 (47.9 ± 1.8 kJ mol?1) and ΔS2 (?181 ± 6 J K?1 mol?1) indicate an associative mode of activation for both the aqua ligand substitution processes. The kinetic study was substantiated by infrared and electrospray ionization mass spectroscopic analysis. © 2011 Wiley Peiodicals, Inc. Int J Chem Kinet 43: 219–229, 2011  相似文献   

5.
The aquation of K‐[Co(dien)(en)Cl]2+ was followed spectrophotometrically within the temperature range (40–60°C) in water, water–isopropyl alcohol, and water–tert‐butyl alcohol media of varying solvent composition up to 50 and 60 vol% of the organic solvent component respectively. The nonlinear plot of log k vs. D?1s was attributed to the differential solvation of the initial and transition states. The variation of ΔH, ΔS, and ΔG with the mole fraction of the organic component was analyzed and discussed. The isokinetic temperatures were found to be 330 and 317 K for water–isopropyl alcohol and water–tert‐butly alcohol mixtures respectively, indicating that the aquation reaction is entropy controlled. The application of free energy cycle at 25°C for the aquation reaction in both co‐solvents suggests that the transition state is more stable than the initial one. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 1–6, 2002  相似文献   

6.
Summary The kinetics of base hydrolysis of cis-[(salicylato)(RNH2) (en)2COIII]2+ (R = H, Me or Et) have been studied in MeOH-H2O medium at 35.0°C, I = 0.1 (ClO 4 ) and 0.01 [OH-]Tmol dm-3 0.10. The phenoxide species [(RNH2)(en)2CoO2C6H4O]+, underwent both OH--independent (SNICB) and OH--catalysed (SN1CB) hydrolysis with K obs=k 1+k 2[OH]. Both k 1 and k 2 are appreciably enhanced by the medium for MeNH2 and EtNH2 complexes. In contrast, for the NH3 complex, k 1 decreases with increasing MeOH content and k 2 was non-existent beyond 60% (v/v) MeOH. These rate variations illustrate the importance of the solute-solvent interaction, presumably partly of hydrophobic origin, and solvent structure in existing stabilizing/destabilizing effects on the initial and transition states.  相似文献   

7.
The kinetics of the base hydrolysis ofcis-[Co(en)2(RNH2)-(SalH)]2+ (R=Me or Et; SalH=HOC6H4CO 2 ) were investigated in aqueous ClO 4 in the 0.004–0.450 mol dm−3 [OH] range, I=0.50 mol dm−3 at 30–40°C. The phenoxide species is hydrolysed via [OH]-independent and [OH]-dependent paths, the latter being first order in [OH]. The high rate of alkali-independent hydrolysis of the phenoxide species is associated with high ΔH and ΔS values, in keeping with the SNICB mechanism involving an amido conjugate base generated by the phenoxide-assisted NH-deprotonation of the coordinated amine. The [OH]-dependent path also involves the conventional SN1 CB mechanism. The rate constant, k1, for the SNICB path exhibits a steric acceleration with the increasing size of the non-labile alkylamine, whereas the rate constant, k2, for the SN1CB path shows a reverse trend. TMC 2578  相似文献   

8.
The kinetics of alkaline hydrolysis of 2‐chloro‐3,5‐dinitrobenzotrifluoride 1 and 1‐chloro‐2,4‐dinitrobenzene 2 were studied in various acetonitrile–water (AN–H2O) mixtures (10–90% w/w) at different temperatures. Thermodynamic parameters ΔH# and ΔS# show great variation, whereas ΔG# appears to vary little with the solvent composition presumably due to compensating variations. The results are discussed in terms of the solvent parameters such as preferential solvation, dielectric constant, polarity/polarizability, and hydrogen bond donor and acceptor parameters. It has been found that the factors controlling the reaction rates are the desolvation of OH?, the solvophobicity of the medium, and free water molecules in rich AN mixed solvent. The data showed that the solvatochromic parameters of (AN–H2O) mixed solvent are destroyed in the presence of excess OH?. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 453–463, 2010  相似文献   

9.
The kinetics of solvolysis of trans‐dichlorobis(N‐methylethylenediamine)cobalt(III) complex have been investigated in aqua‐organic solvent media (0–60% (v/v) cosolvent) at 25 ≤ t°C ≤ 60, using n‐propanol and tert‐butyl alcohol as cosolvents. The first‐order rate constant increased nonlinearly with the reciprocal of the dielectric constant Ds?1, and xorg, reflecting the individuality of the cosolvents and thereby suggesting that the relative stabilities of the transition state and initial state were governed by the preferential solvation effect. The thermodynamic parameters (ΔH and ΔS) were sensitive to the structural changes in the bulk solvent phase. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 495–499, 2002  相似文献   

10.
Properties indirectly determined, or alluded to, in previous publications on the titled isomers have been measured, and the results generally support the earlier conclusions. Thus, the common five‐coordinate intermediate generated in the OH?‐catalyzed hydrolysis of exo‐ and endo‐[Co(dien)(dapo)X]2+ (X=Cl, ONO2) has the same properties as that generated in the rapid spontaneous loss of OH? from exo‐ and endo‐[Co(dien)(dapo)OH]2+ (40±2% endo‐OH, 60±2% exo‐OH) and an unusually large capacity for capturing (R=[CoN3]/[CoOH][]=1.3; exo‐[CoN3]/endo‐[CoN3]=2.1±0.1). Solvent exchange for spontaneous loss of OH? from exo‐[Co(dien)(dapo)OH]2+ has been measured at 0.04 s?1 (k1, 0.50M NaClO4, 25°) from which similar loss from the endo‐OH isomer may be calculated as 0.24 s?1 (k2). The OH?‐catalyzed reactions of exo‐ and endo‐[Co(dien)(dapo)N3]2+ result in both hydrolysis of coordinated via an OH?‐limiting process =153 M ?1 s?1; =295 M ?1 s?1; KH=1.3±0.1 M ?1; 0.50M NaClO4, 25.0°) and direct epimerization between the two reactants =33 M ?1 s?1; =110 M ?1 s?1; 1.0M NaClO4, 25.0°). Comparisons are made with other rapidly reacting CoIII‐acido systems.  相似文献   

11.
Second‐order rate constants have been measured spectrophotometrically for reactions of 2,6‐dimethoxy‐3,5‐dinitropyridine 1 with 4‐X‐substituted phenoxide anions (X = OMe, Me, H, Cl, and CN) 2a–e in aqueous solution at various temperatures. The effect of phenoxide substituents on the reaction rate was examined quantitatively on the basis of kinetic measurements, leading to nonlinear correlations of ΔH and ΔS with Hammett's substituent constants (σ). Each Hammett plots exhibits two intersecting straight lines for the reactions of 1 with the phenoxide anions 2a–e , whereas the Yukawa–Tsuno plots for the same reactions are linear. The large negative ρ values (?4.03 to ?3.80) obtained for the reactions of 1 with the phenoxide anions possessing an electron‐donating group supports the proposal that the reactions proceed through a single‐electron transfer mechanism.  相似文献   

12.
The kinetics of oxidation of benzhydrol and its p-substituted derivatives (YBH, where Y=H, Cl, Br, NO2, CH3, and OCH3) by sodium N-chloro-p-toluenesulfonamide or chloramine-T (CAT), catalyzed by ruthenium(III) chloride, in the presence of hydrochloric acid in 30% (v/v) MeOH medium has been studied at 35°C. The reaction rate shows a first-order dependence on [CAT]O and a fractional-order each on [ YBH]O, [Ru(III)], and [H+]. The reaction also has a negative fractional-order (−0.35) behavior in the reduction product of CAT, p-toluenesulfonamide (PTS). The increase in MeOH content of the solvent medium retards the rate. The variation of ionic strength of the medium has negligible effect on the rate. Rate studies in D2O medium show that the solvent isotope effect, k′H2O/k′D2O, is equal to 0.60. Proton inventory studies have been made in H2O(SINGLEBOND)D2O mixtures. The rates correlate satisfactorily with Hammett σ relationship. The LFE relationship plot is biphasic and the reaction constant ρ=−2.3 for electron donating groups and ρ=−0.32 for electron withdrawing groups at 35°C. Activation parameters ΔH, ΔS, and ΔG have been calculated. The parameters, ΔH and ΔS, are linearly related with an isokinetic temperature β=334 K indicating enthalpy as a controlling factor. A mechanism consistent with the observed kinetics has been proposed. © 1997 John Wiley & Sons, Inc.  相似文献   

13.
The kinetics of oxygen exchange between water (H2O, D2O) and 18O-labelled bromate ion has been investigated over the range of 1.7 ≤ pH ≤ 14.3 and 20 ≤ °C ≤ 95. At 60° and ionic strength I ? 1.0M (NaNO3), the experimental results were consistent with the rate laws (R in moll?1 s?1): From the temperature dependence of the rate constants the activation parameters ΔH, ΔS and ΔC were derived. In the acid-catalysed region the form of the rate law and the direction of the solvent isotope effect were the same as previously found, but the numerical values of ΔH and k2H/k2D differ considerably. For the spontaneous and the OH?-catalysed exchange reactions bimolecular displacement mechanisms are proposed.  相似文献   

14.
The rate constants for the replacement of water from the inner-coordination shell of Co(NH3)5OH23+, I, by dimethyl sulfoxide (DMSO) as DMSO gradually replaced water in the solvation shell of I were found to approach, and finally equal, the water-exchange rate constant of I in aqueous media in accordance with expectation for a dissociative mechanism. Also the rate constants for the replacement of DMSO from the innercoordination shell of Co(NH3)5DMSO3+, II, by water as water replaced DMSO in the solvation shell of II were found to approach, and approximately equal, the DMSO-exchange rate constant for II in liquid DMSO in accordance with expectation for a dissociative mechanism. The DMSO-exchange rate constant for II in liquid DMSO was determined and found to be equal to (3.6 ± 0.8) × 10?4 sec?1 at 45°C. The dissociation quotient, [II] [NO3?]/[Co(NH3)5NO32+], was found to be equal to 0.28 ± 0.11 M at 45°C by NMR methods. The pseudo first-order rate constants for anation of II by NO3? and the solvation of Co(NH3)5NO3 2+ by DMSO were determined at various temperatures.  相似文献   

15.
The effect of added nucleophiles (methanol and 1,4-butanediol) on the steady-state kinetics of α-chymotryptic hydrolysis of a series of N-acetyl-L-amino acid methyl esters, R-CH(NHCOCH3)C(O)OCH3, has been studied. As a result, the rate and equilibrium constants of the ‘elementary’ steps of the enzyme process have been determined. It has also been demonstrated how the free energy–reaction coordinate profile changes if the structure (the size of the hydrocarbon chain) of the ‘chemically inert’ substrate fragment R is varied. The effects observed can be described by the following equation: where ΔGs and ΔGa are the free energies of formation of metastable intermediates, i.e., the enzyme–substrate complex and the acylenzyme, respectively, ΔG2≠ and ΔG3≠ are the free energies of activation for the chemical steps, i.e., enzyme acylation and acylenzyme hydrolysis, respectively; and ΔGtrans(R) is the free energy of transfer of substrate group R from water into a nonaqueous solvent. To explain the results obtained, a mechanism for enzyme–substrate interaction is suggested according to which the potential free energy of sorption of substrate group R on the enzyme is 2 ΔGtrans(R). Such a high gain in the free energy of hydrophobic interaction may only be realized if (a) in the free enzyme the sorption region has a thermodynamically unfavorable contact with the aqueous medium, and (b) water is forced out of the active center as a result of the hydrophobic interaction of substrate group R with the enzyme. Such a model is in agreement with the published x-ray data on the structure of the crystalline enzyme. The kinetic experiment has proved that not all the potential free energy of sorption is realized as binding force. Thus the true free energy of the binding of substrate group R with the protein does not exceed half the maximum value, both in the enzyme–substrate complex and acylenzyme.  相似文献   

16.
Acid hydrolysis of the ester function in Δ-(?)5892-(RR)-[Co (trien) (glyOEt) Cl]2+ ((?)- 1 ) produces optically pure Δ-(?)589-(RR)-[Co (trien) (glyOH)Cl]2+ ((?)- 4 ). Hg2+ induced removal of chloride in (?)- 4 follows the rate law kobs = kHg [Hg2+] with kHg = (1.36 ± 0.03) × 10?2 M?1s?1, 25°, μ=1.0, and produces optically pure Δ-(?)5892-(RR)-[Co(trien) (glyO)]2+ ((?)- 2 ). Competition by NO occurs in this reaction ([NO], 1M, 3%) indicating a path whereby external nucleophiles (Y?NO, H2O) compete with the intramolecular carboxylate function for an intermediate of reduced coordination number. Rapid ring closure to 2 must ensue for Y ? H2O. Base hydrolysis of chloride in (±)- 1 produces (±)- 2 together with its diastereoisomer β2-(RS, SR)-[Co(trien) (glyO)]2+, ((±)- 3 ), in which one secondary amine function has an inverted configuration. 2 and 3 incorporate 18O-labelled solvent into the Co-O position of the coordinated carboxylate moiety ( 2: 9.0%; 3: 12.3%) indicating that at least part of the product arises via intramolecular hydrolysis in β2-hydroxo ethylglycinate intermediates (Fig. 4). Base hydrolysis of (?)- 4 follows the rate law Kobs = kOH[OH?] with kOH = (6.3 ± 0.6) × 10?4M?1 S?1, 25°, μ = 1.0 producing (?)- 2 (37-45%) and (?)- 3 (63-55%), the ratio being somewhat medium dependent. Competition by added N (1M) occurs using (±) - 4 forming β2-(RR, SS)-[Co (trien) (glyO)N3]+ (~2%) and β2-(RS, SR)-[Co (trien) (glyO)N3]+ (~ 13%). Mutarotation at the secondary nitrogen centre is shown to occur after the rate determining loss of Cl? in 1 and 4 and before the formation of 2 and 3 . It is concluded that this secondary nitrogen is the site of deprotonation in the reactive conjugate bases of 1 and 4 , and possible mechanisms for the mutarotation process are considered.  相似文献   

17.
The kinetics of the interaction of L ‐asparagine with [Pt(ethylenediamine)(H2O)2]2+ have been studied spectrophotometrically as a function of [Pt(ethylenediamine)(H2O)22+], [L ‐asparagine], and temperature at pH 4.0, where the substrate complex exists predominantly as the diaqua species and L ‐asparagine as the zwitterion. The substitution reaction shows two consecutive steps: the first step is the ligand‐assisted anation and the second one is the chelation step. Activation parameters for both the steps have been calculated using Eyring equation. The low ΔH1 (43.59 ± 0.96 kJ mol?1) and large negative values of ΔS1 (?116.98 ± 2.9 J K?1 mol?1) as well as ΔH2 (33.78 ± 0.51 kJ mol?1) and ΔS2 (?221.43 ± 1.57 J K?1 mol?1) indicate an associative mode of activation for both the aqua ligand substitution processes. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 252–259, 2003  相似文献   

18.
A family of seven cationic gold complexes that contain both an alkyl substituted π‐allene ligand and an electron‐rich, sterically hindered supporting ligand was isolated in >90 % yield and characterized by spectroscopy and, in three cases, by X‐ray crystallography. Solution‐phase and solid‐state analysis of these complexes established preferential binding of gold to the less substituted C?C bond of the allene and to the allene π face trans to the substituent on the uncomplexed allenyl C?C bond. Kinetic analysis of intermolecular allene exchange established two‐term rate laws of the form rate=k1[complex]+k2[complex][allene] consistent with allene‐independent and allene‐dependent exchange pathways with energy barriers of ΔG1=17.4–18.8 and ΔG2=15.2–17.6 kcal mol?1, respectively. Variable temperature (VT) NMR analysis revealed fluxional behavior consistent with facile (ΔG=8.9–11.4 kcal mol?1) intramolecular exchange of the allene π faces through η1‐allene transition states and/or intermediates that retain a staggered arrangement of the allene substituents. VT NMR/spin saturation transfer analysis of [{P(tBu)2o‐binaphthyl}Au(η2‐4,5‐nonadiene) ]+SbF6? ( 5 ), which contains elements of chirality in both the phosphine and allene ligands, revealed no epimerization of the allene ligand below the threshold for intermolecular allene exchange (ΔG298K=17.4 kcal mol?1), which ruled out the participation of a η1‐allylic cation species in the low‐energy π‐face exchange process for this complex.  相似文献   

19.
For the solvolysis of Co(4-t-Bupy)4Cl2? ions in water + methanol and water + ethanol, log (rate constant) does not vary linearly with the reciprocal of the dielectric constant. The Gibbs free energy, the enthalpy, and the entropy of activation are insensitive to changes in the solvent composition in these mixtures, although a slight broad maximum in ΔH* and ΔS* probably exists at mole fractions of about 0.2 in water + ethanol. This contrasts with the extrema in ΔH* and ΔS* found with more hydrophobic alcohols used as cosolvents. However, the application of a Gibbs energy cycle to the solvolysis in water and in the mixtures shows that there is a differential effect of changes in solvent structure on the emergent solvated CoIII cation in the transition state and on Co(4-t-Bupy)4Cl2+ in the initial state. The stability of the former increases relative to that of the latter as the cosolvent content of the mixture rises. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The kinetics of pyridine exchange on trans-[MO2(py)4]+ have been followed by 1H-NMR in CD3NO2 for M = Re, Tc: k298S?1 = (5.5 ± 0.1) × 10?6, 0.04 ± 0.02; ΔH/kJmol?1 = 111 ± 3, 101 ± 9; ΔS/JK?1mol?1 = +28 ± 10, +68 ± 35. For the Rev complex, pyridine and oxygen exchanges have been measured simultaneously by 1H- and 17O-NMR in deuterated water: k298/s?1 = (8.6 ± 0.2) × 10?6 (py), (14.5 ± 0.3) × 10?6 (oxygen); ΔH/kJmol?1 = 111 ± 1, 91 ± 1; ΔS /JK?1mol?1 = +32 ± 3, ?32 ± 4. For both complexes, the rate law for pyridine exchange is first-order in complex and zero-order in pyridine; together with the activation parameter values, and the fact that the rate does not depend significantly on the nature of the solvent, this strongly implies the operation of a dissociative mechanism. The ratio of pyridine exchange rates for the Tc and Re complexes at room temperature is ca. 8000. The consequences of these observations for radiopharmaceutical synthesis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号