首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is demonstrated that semiempirical methods give electrostatic potential (ESP) derived atomic point charges that are in reasonable agreement with ab initio ESP charges. Furthermore, we find that MNDO ESP charges are superior to AM1 ESP charges in correlating with ESP charges derived from the 6-31G* basis set. Thus, it is possible to obtain 6-31G* quality point charges by simply scaling MNDO ESP charges. The charges are scaled in a linear (y = Mx) manner to conserve charge. In this way researchers desiring to carry out force field simulations or minimizations can obtain charges by using MNDO, which requires much less computer time than the corresponding 6-31G* calculation.  相似文献   

2.
A new strategy to evaluate accurate electrostatic charges from semiempirical wave functions is reported. The rigorous quantum mechanical molecular electrostatic potentials computed from both MNDO and AM1 wave functions are fitted to the point-charge molecular electrostatic potential to obtain the electrostatic charges. The reliability of this strategy is tested by comparing the semiempirical electrostatic charges for 21 molecules with the semiempirical Mulliken charges and with the ab initio STO-3G and 6-31G* electrostatic charges. The ability of the dipoles derived from the semiempirical electrostatic and Mulliken charges as well as from the SCF charge distributions to reproduce the ab initio 6-31G* electrostatic dipoles and the gas phase experimental values is determined. The statistical analysis clearly point out the goodness of the semiempirical electrostatic charges, specially when the MNDO method is used. The excellent relationships found between the MNDO and 6-31G* electrostatic charges permit to define a scaling factor which allows to accurately reproduce the 6-31G* electrostatic charge distribution as well as the experimental dipoles from the semiempirical electrostatic charges.  相似文献   

3.
The AM1‐BCC method quickly and efficiently generates high‐quality atomic charges for use in condensed‐phase simulations. The underlying features of the electron distribution including formal charge and delocalization are first captured by AM1 atomic charges for the individual molecule. Bond charge corrections (BCCs), which have been parameterized against the HF/6‐31G* electrostatic potential (ESP) of a training set of compounds containing relevant functional groups, are then added using a formalism identical to the consensus BCI (bond charge increment) approach. As a proof of the concept, we fit BCCs simultaneously to 45 compounds including O‐, N‐, and S‐containing functionalities, aromatics, and heteroaromatics, using only 41 BCC parameters. AM1‐BCC yields charge sets of comparable quality to HF/6‐31G* ESP‐derived charges in a fraction of the time while reducing instabilities in the atomic charges compared to direct ESP‐fit methods. We then apply the BCC parameters to a small “test set” consisting of aspirin, d ‐glucose, and eryodictyol; the AM1‐BCC model again provides atomic charges of quality comparable with HF/6‐31G* RESP charges, as judged by an increase of only 0.01 to 0.02 atomic units in the root‐mean‐square (RMS) error in ESP. Based on these encouraging results, we intend to parameterize the AM1‐BCC model to provide a consistent charge model for any organic or biological molecule. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 132–146, 2000  相似文献   

4.
Quantum mechanical (ab initio and semiempirical) and force field calculations are reported for representative torsion potentials in several tetrahydropyran derivatives. The overall agreement between the various methods is quite good except that the AMBER torsion profiles are sensitive to the choice of atomic point charges. Using electrostatic potential (ESP) derived atomic point charges determined with the STO-3G basis set we find that AMBER is able to match the best quantum mechanical results quite well. However, when the point charges are derived using the 6-31G* basis set we find that scaling the intramolecular electrostatic nonbond interactions is necessary. AM1 does not work very well for these compounds when compared to the ab initio methods and, therefore, should only be used in cases when ab initio calculations would be prohibitive. Based upon our results we feel that any force field that makes use of 6-31G* ESP derived atomic point charges will need to scale intramolecular interactions. Implications of scaling intramolecular interactions to the development of force fields based on 6-31G* ESP derived atomic point charges are discussed. © 1992 by John Wiley & Sons, Inc.  相似文献   

5.
We present the first global parameterization and validation of a novel charge model, called AM1-BCC, which quickly and efficiently generates high-quality atomic charges for computer simulations of organic molecules in polar media. The goal of the charge model is to produce atomic charges that emulate the HF/6-31G* electrostatic potential (ESP) of a molecule. Underlying electronic structure features, including formal charge and electron delocalization, are first captured by AM1 population charges; simple additive bond charge corrections (BCCs) are then applied to these AM1 atomic charges to produce the AM1-BCC charges. The parameterization of BCCs was carried out by fitting to the HF/6-31G* ESP of a training set of >2700 molecules. Most organic functional groups and their combinations were sampled, as well as an extensive variety of cyclic and fused bicyclic heteroaryl systems. The resulting BCC parameters allow the AM1-BCC charging scheme to handle virtually all types of organic compounds listed in The Merck Index and the NCI Database. Validation of the model was done through comparisons of hydrogen-bonded dimer energies and relative free energies of solvation using AM1-BCC charges in conjunction with the 1994 Cornell et al. forcefield for AMBER.(13) Homo- and hetero-dimer hydrogen-bond energies of a diverse set of organic molecules were reproduced to within 0.95 kcal/mol RMS deviation from the ab initio values, and for DNA dimers the energies were within 0.9 kcal/mol RMS deviation from ab initio values. The calculated relative free energies of solvation for a diverse set of monofunctional isosteres were reproduced to within 0.69 kcal/mol of experiment. In all these validation tests, AMBER with the AM1-BCC charge model maintained a correlation coefficient above 0.96. Thus, the parameters presented here for use with the AM1-BCC method present a fast, accurate, and robust alternative to HF/6-31G* ESP-fit charges for general use with the AMBER force field in computer simulations involving organic small molecules.  相似文献   

6.
Atomic charges derived from a recently described approach to the very rapid computation of AM1 electrostatic potentials (ESP) accurately parallel, but are ca. 20% smaller than, the corresponding HF/6-31G* values. The dipole moments computed from the AM1 charges are virtually identical to those derived directly from the wave function and in rather better agreement with the experimental values than those computed using the HF/6-31G* charges. Unlike other approaches to the semiempirical calculation of ESP-derived charges, the present method also yields near HF/6-31G* quality potentials close to the molecular periphery. For medium-sized organic molecules (40-100 basis functions), the method is approximately two orders of magnitude faster than those involving prior deorthogonalization of AM1 wave function and explicit computation of the full ESP integral matrix. © 1994 by John Wiley & Sons, Inc.  相似文献   

7.
A systematic study of the suitability of PM3-derived molecular electrostatic potentials (MEPs) is presented. Forty-six MEP minima, 81 electrostatic charges, and 17 electrostatic dipoles were determined at the PM3 level and compared with those obtained from the ab initio 6-31G* wave function, as well as from the semiempirical MNDO and AM1 wave functions. The statistical results of the comparison analysis between semiempirical and ab initio 6-31G* MEPs show that PM3 is in general reliable for the study of the MEP minima but a mediocre method as a source of electrostatic charges. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
18-冠醚-6的构象研究   总被引:2,自引:0,他引:2  
以柔性大分子18-冠醚-6为研究对象,将MNDO法所得的三种构象的静电势电荷用于分子力学计算,得到了三种构象的能量,同时计算了电负性电荷,亦将其用于分子力学计算,将两种计算结果进行比较发现,有可能将电负性作为分子力学、分子动力学计算的力场参数。  相似文献   

9.
The natural atomic orbital/point (NAO-PC) model originally developed to calculate molecular electrostatic potentials (MEPs) and multiple moments based on the AM1 wave function has been extended to PM3. As for AM1, NAO-PC/PM3 reproduces dipole moments calculated by the standard PM3 method very well. There is also a surprisingly good correlation between experimental and calculated quadrupole moments. The MEPs calculated using PM3/NAO-PC are found to be in better agreement with those given by RHF/6-31G* than those obtained from the PM3 wave function using Coulson charges. On the other hand, the NAO-PC model is often slightly worse then the method implemented in MOPAC-ESP. The MEPs calculated using our model based on the PM3 wave function are often in better agreement with those given by RHF/6-31G* than those obtain with AM1. © 1994 by John Wiley & Sons, Inc.  相似文献   

10.
Optimized geometries and total energies of some conformers of alpha- and beta-D-galactose have been calculated using the RHF/6-31G* ab initio method. Vibrational frequencies were computed at the 6-31G* level for the conformers that favor internal hydrogen bonding, in order to evaluate their enthalpies, entropies, Gibbs free energies, and then their structural stabilities. The semiempirical AM1, PM3, MNDO methods have also been performed on the conformers GG, GT, and TG of alpha- and beta-D-galactose. In order to test the reliability of each semiempirical method, the obtained structures and energies from the AM1, PM3, and MNDO methods have been compared to those achieved using the RHF/6-31G* ab initio method. The MNDO method has not been investigated further, because of the large deviation in the structural parameters compared with those obtained by the ab initio method for the galactose. The semiempirical method that has yielded the best results is AM1, and it has been chosen to perform structural and energy calculations on the galabiose molecule (the disaccharides constituted by two galactose units alpha 1,4 linked). The goal of such calculations is to draw the energy surface maps for this disaccharide. To realize each map, 144 different possible conformations resulting from the rotations of the two torsional angles psi and phi of the glycosidic linkage are considered. In each calculation, at each increment of psi and phi, using a step of 30 degrees from 0 to 330 degrees, the energy optimization is employed. In this article, we report also calculations concerning the galabiose molecule using different ab initio levels such as RHF/6-31G*, RHF/6-31G**, and B3Lyp/6-31G*.  相似文献   

11.
The suitability of the two most widely used strategies to compute semiempirical MEPs is examined. For this purpose, MEP minima, electrostatic charges, and dipoles for a large number of molecules were computed at the AM1, MNDO, and PM3 levels using both the NDDO strategy developed by Ferenczy, Reynolds, and Richards and our own quasi-ab initio method. Results demonstrate that the quasi-ab initio is preferred over the NDDO method for the computation of MEP minima. It is also found that the best set of semiempirical charges and dipoles are obtained using either the AM1 NDDO or the MNDO quasi-ab initio methods. In these two cases, the quality of the results is fully comparable with 6-31G* values. © 1994 by John Wiley & Sons, Inc.  相似文献   

12.
The harmonic vibrational frequencies of the ground state S0 of aniline obtained from various ab initio methods [6-31G, 6-31G(*) and 6-31G* basis sets] and semiempirical methods (MINDO/3, MNDO, AM1 and PM3) have been compared to the experimental vibrational spectra. Detailed theoretical analyses of the atomic Cartesian displacements of all normal modes are presented. The semiempirical PM3 method reproduces the experimental frequencies of aniline with comparable accuracy to the ab initio methods. Ale PM3 method will be useful in predicting the vibrational spectra of larger aromatic amines.  相似文献   

13.
 2-(Acetylamino)fluorene (AAF), a potent mutagen and a prototypical example of the mutagenic aromatic amines, forms covalent adducts to DNA after metabolic activation in the liver. A benchmark study of AAF is presented using a number of the most widely used molecular mechanics and semiempirical computational methods and models. The results are compared to higher-level quantum calculations and to experimentally obtained crystal structures. Hydrogen bonding between AAF molecules in the crystal phase complicates the direct comparison of gas-phase theoretical calculations with experiment, so Hartree–Fock (HF) and Becke–Perdew (BP) density functional theory (DFT) calculations are used as benchmarks for the semiempirical and molecular mechanics results. Systematic conformer searches and dihedral energy landscapes were carried out for AAF using the SYBYL and MMFF94 molecular mechanics force fields; the AM1, PM3 and MNDO semiempirical quantum mechanics methods; HF using the 3-21G*and 6-31G* basis sets; and DFT using the nonlocal BP functional and double numerical polarization basis sets. MMFF94, AM1, HF and DFT calculations all predict the same planar structures, whereas SYBYL, MNDO and PM3 all predict various nonplanar geometries. The AM1 energy landscape is in substantial agreement with HF and DFT predictions; MMFF94 is qualitatively similar to HF and DFT; and the MNDO, PM3 and SYBYL results are qualitatively different from the HF and DFT results and from each other. These results are attributed to deficiencies in MNDO, PM3 and SYBYL. The MNDO, PM3 and SYBYL models may be unreliable for compounds in which an amide group is immediately adjacent to an aromatic ring. Received: 26 May 2002 / Accepted: 12 December 2002 / Published online: 14 February 2003  相似文献   

14.
Selection of appropriate partial charges in a molecule is crucial to derive good quantitative structure–activity relationship models. In this work, several partial atomic charges were assigned and tested in a comparative molecular field analysis (CoMFA) models. Many CoMFA models were generated for a series of hypoxia inducible factor 1 (HIF‐1) inhibitors using various partial atomic charges including charge equalization, Mülliken population analysis (MPA), natural population analysis, and electrostatic potential (ESP)‐derived charges. These atomic charges were investigated at various theoretical levels such as empirical, semiempirical, Hartree–Fock (HF), and density functional theory (DFT). Among them, Merz‐Singh‐Kollman (MK) ESP‐derived charges at the level of HF/6‐31G* gave the highest predictive q2 with experimental pIC50 values. With this charge scheme, a detailed analysis of CoMFA model was performed to understand the electrostatic interactions between ligand and receptor. More elaborate charge calculation schemes such as HF and DFT correlated more strongly with activity than empirical or semiempirical schemes. The choice of optimization methods was important. As geometries were fully optimized at the given levels of theory, the aligned structures were different. They differed considerably, especially for the flexible parts. This was likely the source of the substantial variation of q2 values, even when the same steric factor was considered without electrostatic parameters. ESP‐derived charges were most appropriate to describe CoMFA electrostatic interactions among MPA, NBA, and ESP charges. Overall q2 values vary considerably (0.8–0.5) depending on the charge schemes applied. The results demonstrate the need to consider more appropriate atomic charges rather than default CoMFA charges. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

15.
The electrostatic potential-derived charges for the catecholamine neurotransmitter dopamine were calculated at the STO-3G and 6-31G* basis sets for six different molecular conformations. The degree of variance of the charges with changing conformations was examined. The 6-31G* basis set produced charges that were more sensitive to changes in conformation than those derived from the STO-3G electrostatic potentials. The implication of the charge variations in molecular mechanics calculations was also investigated. The molecular mechanics results in the gas phase exhibited a variance depending upon the charge set used. The force field calculations varied much less when aqueous solvation was included in the calculations through a continuum model. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
The heats of formation (HOF) for all the 21 polyisocyanocubanes are calculated systematically with density functional theory (DFT) B3LYP and semiempirical MO(MINDO/3, MNDO, AM1 and PM3) methods. First, the accurate HOFs for the 8 title compounds are obtained by means of designed isodesmic reactions at DFT-B3LYP/6-31G* level, and the cubane cage skeleton has not been broken (i.e. choosing cubane as a reference compound) to produce more accurate and reliable results. It is found that there are good linear relationships between the HOFs calculated using the B3LYP/6-31G* and four semiempirical MO methods, respectively, and all of the linear correlation coefficients are more than 0.9971. The HOFs obtained from PM3 calculation are the best among the four semiempirical MO methods. Then, the accurate HOFs at B3LYP/6-31G* level of other 13 polyisocyanocubanes are obtained by systematically correcting their PM3-calculated HOFs. Polyisocyanocubanes have very high HOFs, and the HOFs increase linearly with the increasing of the number of isocyano groups in a molecule. The results show that polyisocyanocubanes are the new generation explosives with highly potential and exploitable value.  相似文献   

17.
The heats of formation (HOP) for all the 21 polyisocyanocubanes are calculated systematically with density functional theory (DFT) B3LYP and semiempirical MO(MINDO/3, MNDO, AM1 and PM3) methods. First, the accurate HOFs for the 8 title compounds are obtained by means of designed isodesmic reactions at DFT-B3LYP/6-31G* level, and the cubane cage skeleton has not been broken (i.e. choosing cubane as a reference compound) to produce more accurate and reliable results. It is found that there are good linear relationships between the HOFs calculated using the B3LYP/6-31G* and four semiempirical MO methods, respectively, and all of the linear correlation coefficients are more than 0.9971. The HOFs obtained from PM3 calculation are the best among the four semiempirical MO methods. Then, the accurate HOFs at B3LYP/6-31G* level of other 13 polyisocyanocubanes are obtained by systematically correcting their PM3-calculated HOFs. Polyisocyanocubanes have very high HOFs, and the HOFs increase linearly with the increa  相似文献   

18.
Absolute free energies of hydration (DeltaGhyd) have been computed for 25 diverse organic molecules using partial atomic charges derived from AM1 and PM3 wave functions via the CM1 and CM3 procedures of Cramer, Truhlar, and coworkers. Comparisons are made with results using charges fit to the electrostatic potential surface (EPS) from ab initio 6-31G* wave functions and from the OPLS-AA force field. OPLS Lennard-Jones parameters for the organic molecules were used together with the TIP4P water model in Monte Carlo simulations with free energy perturbation theory. Absolute free energies of hydration were computed for OPLS united-atom and all-atom methane by annihilating the solutes in water and in the gas phase, and absolute DeltaGhyd values for all other molecules were computed via transformation to one of these references. Optimal charge scaling factors were determined by minimizing the unsigned average error between experimental and calculated hydration free energies. The PM3-based charge models do not lead to lower average errors than obtained with the EPS charges for the subset of 13 molecules in the original study. However, improvement is obtained by scaling the CM1A partial charges by 1.14 and the CM3A charges by 1.15, which leads to average errors of 1.0 and 1.1 kcal/mol for the full set of 25 molecules. The scaled CM1A charges also yield the best results for the hydration of amides including the E/Z free-energy difference for N-methylacetamide in water.  相似文献   

19.
The structures of 1,3-substituted squaraine derivatives Sq1 ~ Sq12 were fully optimized by ab initio HF method with 6-31G* basis set level,and the electronic structures of Sq1 ~ Sq12 were also calculated. Based on the optimized structures,the electronic spectra were obtained by the CIS / 6-31G* method,which suggested that the max absorption wavelength mainly resulted from the electronic transition from HOMO to LUMO. The second nonlinear optical coefficients(β0)were calculated using ab initio CPHF method at 6-31G* basis set level and FF / AM1,FF / PM3,FF / MNDO,FF / MINDO3 methods. A systematic comparison between the results was carried out. It indicated that the second nonlinear optical coefficients were affected dramatically by the properties of five-membered hetero-rings. β0 can be enhanced by introducing pyrrole,thiazole and oxazole. The position of five-membered rings containing two heteroatoms which were connected with four-membered squaraine rings also affected β0 .  相似文献   

20.
The natural atomic orbital/point charge (NAO-PC) model based upon the AM1 wave function has been developed to calculate molecular electrostatic potentials (MEPs). Up to nine point charges (including the core charge) are used to represent heavy atoms. The positions and magnitudes of the eight charges that represent the atomic electron cloud are calculated from the natural atomic orbitals (NAOs) and their occupations. Each hybrid NAO is represented by two point charges situated at the centroid of each lobe. The positions of the centroids and the magnitudes of the charges were obtained by numerical integration of the Slater-type hybrids and the results used to set up polynomials and look-up tables that replace the integration step in the actual MEP calculation. The MEPs calculated using this method are found to be in better agreement with those obtained using RHF/6-31G* than those obtained from the AM1 wave function using Coulson charges or with MOPAC-ESP. The MEP calculations are extremely fast and have, for instance, been incorporated into an interactive graphics package. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号