首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An overall mechanistic scheme for the suspension polymerization of vinyl chloride is presented. The process can be resolved into five discrete stages, each of which presents a unique environment for the interaction of the systems parameters. It is shown that the surface area of the polymer formed during the reaction is not a major factor in autoacceleration and that the increase of kinetic chain length with conversion is due to a radical dilution effect. The latter is a direct result of the difference in rates between polymerization and radical formation, the former being greater. The increase of the initial polymerization rate and the reduction of autoacceleration brought about by chain transfer agents can be explained by the lower diffusion rate and greater bulkiness of the chain transfer agent radical relative to that of the monomer radical. The chaintransfer agent CBr4 is preferentially absorbed by PVC from solution in vinyl chloride. With lauryl peroxide as initiator it is shown that the “hot spot” is the result of a build-up of initiator in the monomer caused by its exclusion from the polymer phase. Vinyl chloride was found to dissolve 0.03% PVC at ambient temperature and to have no effect on the decomposition rate of lauryl peroxide.  相似文献   

2.
Vinyl chloride, vinyl fluoride, and tetrafluoroethylene were polymerized in a radio frequency electric glow discharge. It was found that when compared with the unhalogenated simple hydrocarbons, the rates of polymer deposition are in the order vinyl chloride, acetylene, tetrafluoroethylene, vinyl fluoride, ethylene. This observation can be rationalized by considering the ease with which free radical and unsaturated species can be formed in the plasma. IR spectra show that the structures of plasma-polymerized vinyl chloride and vinyl fluoride are in many respects similar to the plasma-polymerized hydrocarbon. The spectrum of plasma-polymerized tetrafluoroethylene, however, does not resemble that of conventional polytetrafluoroethylene. Addition of dichlorodifluoromethane to the monomer stream dramatically increased the polymer deposition rate; the effect is more subdued for chloromethane and is negligible for tetrafluoromethane. Elemental analysis indicates that little of the added halogens is present in the resultant polymers. Thus the halogenated compounds appear to act as a gas phase catalyst for the plasma polymerization of hydrocarbons.  相似文献   

3.
Polymerization of phenylacetylene in presence of butyllithium has been studied. It is shown that the process of polymerization is accompanied by the appearance and growth of the ESR signal. The model of anionic polymerization is suggested according to which formation of low-molecular-weight polyphenylacetylene is caused by the destruction of the active centers by means of electron transfer from active center to the conjugated chain. The assumption is made that electron transfer from conjugated chain to an active center may also be a fundamental reaction limiting the chain length in cationic polymerization of acetylene monomers. The kinetic scheme of ionic polymerization of acetylene monomers with consideration of electron transfer is analyzed and molecular weight distribution functions are obtained with good agreement between the calculated parameters and experiment. It is shown that one of the ways of obtaining high-molecular-weight polyacetylenes in ionic polymerization is the formation of donor-acceptor complexes with a polyene chain in the process of the chain growth. The formation of complexes exchanges parameters of electron structure of the polyene chain and decreases the rate of the electron transfer reactions.  相似文献   

4.
It is shown that kinetic data on the polymerization of acetylene to vinyl acetylene and benzene can be reconciled with the formation of a 1,4 biradical which can isomerize by a 1-3, H-atom shift to the molecular product. Since the biradicals have a negligibly small life-time in the system the overall process appears to be a concerted bimolecular reaction. The labile isomer CH2 ? C: which had been suggested as being the reactive intermediate, is argued on energy considerations not to be a plausible intermediate. Data on the reverse pyrolysis of vinyl acetylene to acetylene are consistent with the model. Extending the model to butadiene explains the observed molecular nature of its decomposition to ethylene and acetylene. Reactions of other oligomers of acetylene are discussed.  相似文献   

5.
The preparation of poly(vinyl acetate) with well-controlled structure has received a great deal of interest in recent years because of a large number of developments in living radical polymerization techniques. Among these techniques, the use of reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization has been employed for the controlled polymerization of vinyl acetate due to the high susceptibility of this monomer towards chain transfer reactions. Here, a novel water-soluble N,N-dialkyl dithiocarbamate RAFT agent has been prepared and employed in the emulsion polymerization of vinyl acetate. The kinetic results reveal that the polymerization nucleation mechanism changes from homogeneous to micellar and RAFT-generated radicals can change the kinetic behavior from conventional emulsion polymerization to living radical polymerization. At higher concentrations of the modified RAFT agent, as a result of an aqueous phase reaction between RAFT and sulfate radicals, relatively more hydrophobic radicals are generated, which favors entry and propagation into micelles swollen with monomer. This observation was determined from the investigation of the polymerization rate and measurements of the average particle diameter and the number of particles per liter of the aqueous phase. Molecular weight analysis also demonstrated the participation of the RAFT agent in the polymerization in such a way as to restrict chain transfer reactions. This was determined by examining the evolution of polymer chain length and attaining higher molecular weights, even up to 50?% greater than the samples obtained from the conventional emulsion polymerization of vinyl acetate in the absence of the synthesized modified RAFT agent.  相似文献   

6.
The kinetics of polymerization of vinyl acetate in individual and mixed solvents was studied. The reaction rate constant and the rate of chain transfer in the mixed solvent were calculated, molecular weights and some adhesive characteristics of poly(vinyl acetate) obtained by the radical polymerization in solution were determined. A comparative analysis of the polymers obtained in the individual and mixed solvents was performed. It is shown that the change in the solvent composition can affect the rate of reaction and the poly-(vinyl acetate) adhesive properties.  相似文献   

7.
Various vinyl ethers have been examined as additives during radical polymerizations initiated by azobisisobutyronitrile at 60°C; the monomers were methyl methacrylate (MMA), styrene (STY) and acrylonitrile (AN). For MMA and STY, the vinyl ethers were incorporated to only small extents but they caused reductions in rate of polymerization and chain length of the resulting polymer; the effects can be attributed to the low reactivities in growth reactions of radicals to which a vinyl ether unit was last added. Copolymerization of the vinyl ethers with AN was more evident but, in many cases, it was accompanied by increased rate of consumption of AN and increased chain length of the polymer. These changes can be explained in terms of a physical effect which can be likened to that believed to be responsible for the gel effect. It is considered that polymer radicals are rather tightly coiled in an indifferent solvent so that the normal bimolecular termination is impeded.  相似文献   

8.
For a deeper understanding of allyl polymerization mechanism, the reinitiation efficiency of resonance‐stabilized monomeric allyl radical was pursued because in allyl polymerization it is commonly conceived that the monomeric allyl radical generated via the allylic hydrogen abstraction of growing polymer radical from monomer, i.e., “degradative monomer chain transfer,” has much less tendency to initiate a new polymer chain and, therefore, this monomer chain transfer is essentially a termination reaction. Based on the renewed allyl polymerization mechanism in our preceding article, the monomer chain transfer constant in the polymerization of allyl benzoate was estimated to be 2.7 × 10?2 at 80 °C under the polymerization condition, where the coupling termination reaction of growing polymer radical with allyl radical was negligible and, concurrently, the reinitiation reaction of allyl radical was enhanced significantly. The reinitiation efficiencies of monomeric allyl radical were pursued by the dead‐end polymerizations of allyl benzoate at 80, 105, and 130 °C using a small amount of initiators; they increased remarkably with raised temperature. Thus, the enhanced reinitiation reactivity of allyl radical at an elevated temperature could bias the well‐known degradative monomer chain transfer characteristic of allyl polymerization toward the chain transfer in common vinyl polymerization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
The polymerization of vinyl fluoride has been studied in the temperature range of 0–50°C. with the aid of different types of initiators. Ziegler-Natta systems based on vanadyl acetylacetonate and AIR(OR)Cl compounds showed good activity. Enhanced reaction rates and higher polymerization degrees were achieved with boron alkyls (and, to a lesser degree, Cd, Zn, and Be alkyls) activated by oxygen. With either types of initiator, the main features and the kinetic parameters of the polymerization were determined. In all cases, the polymerization is considered to be of the free-radical type, though some properties (crystallinity, melting temperature) of the polymer are shown to be markedly improved over the previously described high-pressure polymer. This is chiefly ascribed to an improved degree of chemical regularity of the chains. The copolymerization of vinyl fluoride in the presence of the cited initiators was studied with a number of monomers. The values of the copolymerization parameters allow us to obtain Q (0.010 ± 0.005) and e (?0.8±0.2) values and to discuss the reactivity of vinyl fluoride in radical chain propagation.  相似文献   

10.
Kinetics of vinyl polymerization of acrylonitrile initiated by the redox system tartaric acid–V5+ have been investigated in aqueous sulfuric acid in the temperature range 30–40°C. The rates of polymerization and V5+ disappearance and the chain lengths of polyacrylonitrile were measured. From the results it is concluded that the polymerization reaction is initiated by an organic free radical arising from the V5+–tartaric acid reaction with termination by V5+ ions. A suitable kinetic scheme has been proposed, and the various rate and energy parameters were evaluated.  相似文献   

11.
We have newly developed a bi-continuous macroporous polymer derived from oligo-ethylene oxide di-vinyl ether by cationic polymerization. Although vinyl ether is not easily polymerized using radical polymerization in its homo-polymerization, we have found that a cationic polymerization with a combination of good and poor solvents for the glowing polymer chain realized bi-continuous macroporous polymer as the first example of cross-linked, macroporous vinyl ether polymer.  相似文献   

12.
Novel mono‐ and multifunctional vinyl ester monomers containing thioether groups were synthesized via an amine‐catalyzed Michael addition reaction between vinyl acrylate and multifunctional thiols. Using photo‐differential scanning calorimetry and real‐time Fourier transform infrared (RTIR) spectroscopy, the polymerization kinetics and oxygen inhibition of the homopolymerizations of the vinyl ester monomers were investigated. The effect of the vinyl ester and thioether group on acrylate/vinyl ester and thiol/vinyl ester copolymerizations was determined using real‐time IR spectroscopy to monitor polymerization rates of acrylate, vinyl, and thiol groups simultaneously. Polymerization of the vinyl esters used was found to be relatively insensitive to oxygen inhibition. We propose that the thioether group is responsible for reducing oxygen inhibition by a series of chain transfer/oxygen‐scavenging reactions. In polymerization of a acrylate/vinyl ester mixture both in nitrogen and in air, the vinyl ester monomer significantly enhances the polymerization rates and the conversion of the acrylate double bonds via plasticization of the crosslinked matrix and reduction of inhibition by oxygen. Ultimately, the vinyl ester monomer is incorporated into the polymer network. Thiol/vinyl ester free‐radical copolymerization is much faster than either thiol/allylether copolymerization or vinyl ester homopolymerization. The electron‐rich vinyl ester double bonds ensure rapid copolymerization with thiol. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4424–4436, 2004  相似文献   

13.
The molecular structure of bis(acetylacetonate)cobalt(II) ([Co(acac)2]) in solution and in the presence of the electron donors (ED) pyridine (py), NEt3, and vinyl acetate (VOAc) was investigated using 1H NMR spectroscopy in C6D6. The extent of formation of ligand adducts, [Co(acac)2(ED)x], varies in the order py>NEt3>VOAc (no interaction). Density functional theory (DFT) calculations on a model system agree with Co--ED bond strengths decreasing in the same order. The effect of electron donors on the [Co(acac)2]-mediated radical polymerization of VOAc was examined at 30 degrees C by the addition of excess py or NEt3 to the complex in the molar ratio [VOAc]0/[Co]0/[V-70]0/[py or NEt3]0=500:1:1:30 (V-70=2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile)). As previously reported by R. Jerome et al., the polymerization showed long induction periods in the absence of ED. However, a controlled polymerization without an induction period took place in the presence of ED, though the level of control was poorer. The effective polymerization rate decreased in the order py>NEt3. A similar behavior was found when these electron donors were added to an ongoing [Co(acac)2]-mediated radical polymerization of VOAc. On the basis of the NMR and DFT studies, it is proposed that the polymerization is controlled by the reversible homolytic cleavage of an organocobalt(III) dormant species in the presence of ED. Conversely, the faster polymerization after the induction period in the absence of ED is due to a degenerative transfer process with the radicals produced by the continuous decomposition of the excess initiator. Complementary experiments provide additional results in agreement with this interpretation.  相似文献   

14.
In polymerization of vinyl chloride monomer, free radicals precipitate on or within aggregates of partially swollen dead polymer. Polymerization on the solid polymer is characterized by autoaccelerating rates due to a progressive reduction in termination rate. This reduction in termination rate is due to the fact that as the reaction progresses and more polymer accumulates there is a decrease in probability that chain transfer of polymer radicals to monomer will generate a mobile radical, which can readily terminate an occluded or stuck free radical. From the appearance of the particles of solid polymer in the system, it has been concluded that free radicals precipitate both on polymer particle surface and inside the open structure of polymer particles.  相似文献   

15.
The 337.1-nm emission of a pulsed nitrogen laser was shown to initiate the crosslinking polymerization of epoxy-acrylate photoresists effectively. We evaluated the extent of curing from the amount of insoluble polymer formed and by the decrease in infrared (IR) absorption of the reactive double bond at 810 cm?1. With the large power density available in the laser pulse (0.5 MW cm?2) rates of polymerization as high as 108 mol L?1 s?1 were observed in the presence of air. Quantum yield measurements indicated that each photon absorbed can create as many as 450 crosslinks; the kinetic chain length was calculated as ca. 4000 double bonds polymerized per initiating radical. During the induction period due to oxygen inhibition each photoinitiator radical consumed 1 O2 molecule. The influence of the monomer and photoinitiator used on the sensitivity of the resin was examined; the best performing formulation contained the epoxy-acrylate oligomer, pentaerythritol triacrylate, as monomer and 2,2 dimethoxy-2-phenyl-acetophenone as photoiniatior. All the formulations studied can be cured by a single 500-kW laser pulse of 8 ns duration, provided that the irradiation is carried out in an inert atmosphere or with a focused laser beam.  相似文献   

16.
许文静  张文生  闫金龙  李伟  申国玉 《应用化学》2011,28(10):1143-1147
在醋酸乙烯酯的普通自由基聚合体系中加入少量碘(质量分数为0.57%~0.86%),用偶氮二异丁腈作引发剂合成聚醋酸乙烯酯,对其聚合反应的动力学及反应机理进行了研究。 考察了碘质量分数对聚合反应速率、聚合物分子量及分子量分布的影响,发现随着碘浓度的增加,聚合物分子量及分子量分布得到更好的控制;对聚合过程进行了核磁跟踪,考察了聚合过程中几种化合物的变化情况,特别是初级自由基与碘生成的加合物A-I(A来自引发剂分裂后产生的自由基)及单体加合物A-Mn-I(M代表单体单元)的变化情况;对聚合物结构作了详细的1H NMR分析,结果表明,聚合过程中分子量随时间延长而逐渐增大,分子量分布随单体转化率增加而变窄,聚合终期,单体转化率达到80%左右时,所得聚合物分子量分布窄(Mw/Mn≤1.41),且含有碘端基。该方法的自由基聚合具有活性/可控的性质。  相似文献   

17.
A new preparative route to photocrosslinkable polymers in which the polymers are produced directly from the polymerization of vinyl monomers having photocrosslinkable groups has been investigated. The photosensitive resins thus produced have higher sensitivity and resolution than conventional photosensitive resins. The monomers were synthesized from the esterification of vinylphenols or vinyl β-chloroethyl ether with cinnamic acid, β-styrylacrylic acid, and their homologs, and from the etherification of vinyl β-chloroethyl ether with hydroxychalcones. Homopolymerizations of these monomers and their copolymerizations with other comonomers were investigated with the use of both radical and ionic initiators. It is shown that radical polymerization of the monomers gave soluble polymers only at low conversion. Anionic initiators did not initiate polymerization. Cationic polymerization imparted soluble polymers in high yield, except for the monomers bearing cyano groups, which generally gave insoluble polymers. Infrared and NMR spectroscopic investigation of the cationically obtained soluble polymers and comparative investigation by cationic polymerization of model compounds indicated that polymerization of the monomers proceeds through the vinyl double bond without affecting the photosensitive unsaturated bond. Thus, linear photocrosslinkable polymers with an intact photoreactive group may be produced by cationic polymerization. In general, these polymers have uniform structure and modifiable physical properties depending on the monomer used. The polymer thus obtained from β-vinyloxyethyl cinnamate has been shown to have excellent properties for use as a photo-resist.  相似文献   

18.
The emulsion polymerization of vinyl acetate was investigated at low ionic strengths and has quite unusual kinetics. The rate of polymerization is dependent on the initiator concentration to the first power and independent of soap concentration. In seeded polymerizations, the rate of polymerization depends on initiator to the 0.8 power, particle concentration to the 0.2 power, and monomer volume to 0.35 power. In all cases the rate of polymerization is almost independent of monomer concentration in the particles until 85–90% conversion. These results were rationalized by the following mechanism: (a) polymerization initiates in the aqueous phase because of the solubility of the monomer and is stabilized there by adsorption of ionic soap on the growing polymer molecule; (b) the growing polymer is swept up by a particle at a degree of polymerization (under our conditions) of about 50–200. Growth continues in the particle. This sweep-up is activation-controlled as both particle and polymer are charged. (c) Chain transfer to the acetyl group of monomer gives a new small radical which cyclizes to the water-soluble butyrolactonyl radical, and reinitiates polymerization in the aqueous phase; (d) the main termination step is reaction of an uncharged butyrolactonyl radical with a growing aqueous polymer radical. A secondary reaction at low ionic strength is sweep-up of an aqueous radical by a particle containing a radical. At high ionic strength, this is the major termination step. The unusual kinetic steps are justified by data from the literature. They are combined with the usual mechanisms operating for vinyl acetate polymerization and kinetic equations are derived and integrated. The integral equations were compared with the experimental data and shown to match it almost completely over the whole range of experimental variables.  相似文献   

19.
During the production of free radical initiated low‐density polyethylene (LDPE), it was discovered that the addition of low levels of alkyl aluminum compounds caused the molecular weight of the LDPE to drop precipitously. Further investigation demonstrated that aluminum‐alkyl compounds are among the most effective chain transfer agents ever utilized. It was also shown that polymer chains, which transfer to Al alkyl species, contain almost exclusively vinyl terminated end groups. A catalytic chain transfer mechanism is proposed in which chain transfer occurs from a growing polymer chain to an aluminum center followed by beta hydride elimination to produce a vinyl terminated polymer chain and a new aluminum hydride bond. This new aluminum hydride bond can then undergo further chain transfer reactions. This is the first time such a catalytic chain transfer mechanism has been reported. As little as 10–20 mol ppm aluminum alkyl species decreased the degree of polymerization by a factor of 2 resulting in chain transfer constant (Cs) values as high as 1000–2000. Density functional theory (DFT) study elucidated the catalytic cycle of triethylaluminum (TEA). It is discovered that, depending on the reaction conditions, TEA can serve as a conventional as well as catalytic chain transfer agent.  相似文献   

20.
The polymerization of vinyl monomers generally requires the selection of an appropriate single intermediate, whereas in copolymerization, the selection of the comonomer is limited by the intermediate. Herein, we propose interconvertible dual active species that can connect comonomers through different mechanisms to produce specific comonomer sequences in a single polymer chain. More specifically, two different stimuli, that is, a radical initiator and a Lewis acid, are used to activate the common dormant C? SC(S)Z group into radical and cationic species, thereby inducing interconvertible radical and cationic copolymerization of acrylate and vinyl ether to produce a copolymer chain that consists of radically and cationically polymerized segments. The dual reversible activation provides control over molecular weights and multiblock copolymers with tunable segment lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号