首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methyl-methyl reaction was studied in a shock tube using uv narrowline laser absorption to measure time-varying concentration profiles of CH3. Methyl radicals were rapidly formed initially by pyrolysis of various precursors, azomethane, ethane, or methyl iodide, dilute in argon. The contributions of the various product channels, C2H6, C2H5 + H, C2H4 + H2, and CH2 + CH4, were examined by varying reactant mixtures and temperature. The measured rate coefficients for recombination to C2H6 between 1200 and 1800 K are accurately fit using the unimolecular rate coefficients reported by Wagner and Wardlaw (1988). The rate coefficient for the C2H5 + H channel was found to be 2.4 (±0.5) × 1013 exp(?6480/T) [cm3/mol-s] between 1570 and 1780 K, and is in agreement with the value reported by Frank and Braun-Unkhoff (1988). No evidence of a contribution by the C2H4 + H2 channel was found in ethane/methane/argon mixtures, although methyl profiles in these mixtures should be particularly sensitive to this channel. An upper limit of approximately 1011 [cm3/mol-s] over the range 1700 to 2200 K was inferred for the rate coefficient of the C2H4 + H2 channel. Between 1800 and 2200 K, methyl radicals are also rapidly removed by CH3 + H ? 1CH2 + H2. In this temperature range, the reverse reaction was found to have a rate coefficient of 1.3 (±0.3) × 1014 [cm3/mol-s], which is 1.8 times the room-temperature value. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The formation and consumption of CH radicals during shock-induced pyrolysis of a few ppm ethane diluted in argon was measured by a ring-dye laser spectrometer. Absorption-over-time profiles, measured at a resonance line in the Q-branch of the A2Δ − X2Π band of CH at λ = 431.1311 nm, were recorded and transformed into CH concentrations by known absorption coefficients. By adding some hundred ppm of CO2 or O2 to the initial mixtures, the CH concentration profiles were significantly perturbed. Both the perturbed and unperturbed CH concentration profiles have been compared with calculations based on a reaction kinetic model. A sensitivity analysis revealed that the perturbation process was dominated by direct reactions of CH with the added molecules. By fitting calculated to observed CH profiles the following rate coefficients were obtained The experiments were performed in the temperature range between 2500 K and 3500 K. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Reactions of the hydroxyl radical, OH, with several organic species of interest in combustion chemistry have been studied near 1200 K and 1 atm in shock tube experiments in which UV absorption was used to monitor the OH concentration. Rate coefficients were measured for the reactions of OH with 2,3-dimethylbutane, isooctane, neooctane, ethylene, propylene, acetylene, formaldehyde, methanol, and ethanol. The values were found to be (in units of 1012 cm3/mol-s): 21, 22, 18, 2.6, 9.6, 0.28, 12, 5.2, and 5.3. These measured values are compared with previous experimental results and, where appropriate, transition-state theory calculations.  相似文献   

4.
The reactions of NH(X3Σ) with NO, O2, and O have been studied in reflected and incident shock wave experiments. The source of NH in all the experiments was the thermal dissociation of isocyanic acid, HNCO. Time-histories of the NH(X3Σ) and OH(X2Π) radicals were measured behind the shock waves using cw, narrow-linewidth laser absorption at 336 nm and 307 nm, respectively. The second-order rate coefficients of the reactions: were determined to be: and cm3 mol−1 s−1, where ƒ and F define the lower and upper uncertainty limits, respectively. The branching fraction of channel defined as k3b/k3total, was determined to be 0.19 ± 0.10 over the temperature range of 2940 K to 3040 K.  相似文献   

5.
The reaction of methyl radicals with atomic and molecular oxygen was studied with a photoionization mass spectrometer. The methyl radicals were generated by reacting oxygen atoms with ethylene in a fast-flow tube reactor. The rate constant for the reaction of methyl radicals with oxygen atoms was (1.0 ± 0.2) × 10?10 cm3/molec · sec with no significant variation with temperature over the range of 259–341°K. The reaction of methyl radicals with molecular oxygen involves both a two-body reaction, having a rate constant \documentclass{article}\pagestyle{empty}\begin{document}$\begin{array}{*{20}c} {k_{{\rm 3a}} = (10^{- 12.54 \pm 0.35})\exp [(- 940 \pm 250)T^{- 1}]} & {{\rm cm}^{\rm 3} /{\rm molec} \cdot {\rm sec}} \end{array}$\end{document} and a three-body recombination having a negative temperature dependence. The methyl peroxy radical could be observed at its steady-state concentration. The rate constants determined at low pressures are compatible with the values determined at higher pressures by flash photolysis. Formaldehyde appears to be a major product of the two-body reaction of CH3 with O2, and also of the reaction of CH3O2 with oxygen atoms.  相似文献   

6.
A novel inductively coupled plasma/selected-ion flow tube (ICP/SIFT) mass spectrometer has been constructed for the study of the kinetics and product distributions of reactions of atomic and atomic oxide ions with neutral molecules. The ICP essentially provides a universal source for atomic ions. The operation of the instrument is demonstrated with prototype reactivity and kinetic measurements.  相似文献   

7.
The surface reactions of atomic and molecular oxygen with carbon phosphide films have been studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Carbon phosphide films were produced by ion implantation of trimethylphosphine into polyethylene. Atmospheric oxidation of carbon phosphide films was dominated by phosphorus oxidation and generated a carbon-containing phosphate surface film. This oxidized surface layer acted as an effective diffusion barrier, limiting the depth of phosphorus oxidation within the carbon phosphide film to < 3 nm. The effect of atomic oxygen (AO) exposure on this oxidized carbon phosphide layer was subsequently probed in situ using XPS. Initially AO exposure resulted in a loss of carbon atoms from the surface, but increased the surface concentration of phosphorus atoms as well as the degree of phosphorus oxidation. For more prolonged AO exposures, a highly oxidized phosphate surface layer formed that appeared to be inert toward further AO-mediated erosion. By utilizing phosphorus-containing hydrocarbon thin films, the phosphorus oxides produced during exposure to AO were found to desorb at temperatures >500 K under vacuum conditions. Results from this study suggest that carbon phosphide films can be used as AO-resistant surface coatings on polymers.  相似文献   

8.
9.
The reactions have been studied in a discharge-flow system. Kinetic studies were made using resonance fluorescence for the measurement of atom concentrations. Based on the rates of atom loss, the following upper limits were obtained for the rate constants: Observed reaction in the H? HNO3 system is at least partially due to an autocatalytic chain removal of both reactants. Diagnostic tests have suggested that OH, NO2, and NO3 are the chain carriers.  相似文献   

10.
The reaction of CH3 with OH has been studied near 1200 K and 1 atmosphere pressure in shock tube experiments in which UV absorption was used to monitor [OH]. A rate coefficient of (1.1 ± 0.3) × 1013 cm3/mol-s was measured for removal of OH by CH3. This measured value is compared with previous experimental data and calculations. Several possible reaction channels are discussed, and although products were not monitored, it seems probable, on the basis of other work and theoretical estimates, that the primary mechanism (?75%) for the removal of OH by CH3 at these conditions is their combination to form CH3OH. Rate coefficients of (5.3 ± 0.8) × 1012 and (9.0 ± 1.4) × 1012 cm3/mol-s were measured for the reactions of OH with acetone and ethane, respectively, at the same temperature and pressure.  相似文献   

11.
The rate coefficient for the reaction of the hydroxyl radical, OH, with propane has been measured at 1220 K in shock tube experiments, and a value of (1.58 ± 0.24) × 1013 cm3/mol s was obtained. This measured value is compared with previous experimental results and a transition-state theory calculation.  相似文献   

12.
NO2 concentration profiles in shock-heated NO2/Ar mixtures were measured in the temperature range of 1350–2100 K and pressures up to 380 atm using Ar+ laser absorption at 472.7 nm, IR emission at 6.25±0.25 μm, and visible emission at 300–600 nm. In the course of this study, the absorption coefficient of NO2 at 472.7 nm was measured at temperatures from 300 K to 2100 K and pressures up to 75 atm. Rate coefficients for the reactions NO2+M→NO+O+M (1), NO2+NO2→2NO+O2 (2a), and NO2+NO2→NO3+NO (2b) were derived by comparing the measured and calculated NO2 profiles. For reaction (1), the following low- and high-pressure limiting rate coefficients were inferred which describe the measured fall-off curves in Lindemann form within 15% [FORMULA] The inferred rate coefficient at the low- pressure limit, k1o, is in good agreement with previous work at higher temperatures, but the energy of activation is lower by 20 kJ/mol than reported previously. The pressure dependence of k1 observed in the earlier work of Troe [1] was confirmed. The rate coefficient inferred for the high pressure limit, k1∞, is higher by a factor of two than Troe's value, but in agreement with data obtained by measuring specific energy-dependent rate coefficients. For the reactions (2a) and (2b), least-squares fits of the present data lead to the following Arrhenius expressions: [FORMULA] For reaction (2), the new data agree with previously recommended values of k2a and k2b, although the present study suggests a slightly higher preexponential factor for k2a. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 483–493, 1997.  相似文献   

13.
14.
1-Substituted-3-aminoquinoline-2,4(1H,3H)-diones react with potassium cyanate or potassium thiocyanate in boiling acetic acid to give ureido- or thioureidooxindoles, spiro-oxindoles and dihydroimidazoquinolones. However, if the starting compounds are substituted with a benzyl group at position 3, a C-debenzylation proceeds to give imidazoquinolones. According to a proposed reaction mechanism, a molecular rearrangement of the primarily formed mono-substituted urea or thiourea takes place. All compounds were characterized by 1H, 13C and IR spectroscopy and MS data.  相似文献   

15.
Zhang  Feng  Fang  WeiHai  Luo  Yi  Liu  RuoZhuang 《中国科学:化学(英文版)》2009,52(11):1885-1891
Science China Chemistry - A general formula for the multi-dimensional Monte Carlo microcanonical nonadiabatic rate constant expressed in configuration space is applied to calculate the rate of...  相似文献   

16.
A nozzle-beam-skimmer sampling system is used to measure species concentration profiles for a lean one-dimensional premixed CO? O2? Ar flame, into which small amounts of sulfur dioxide are introduced. The net formation rate for sulfur trioxide is obtained from the flux fraction profile for this species. The kinetic scheme is then utilized, along with the measured temperature profiles, to evaluate the rate coefficients k1 and k2 over the temperature range of 1435–1850 K. The most satisfactory agreement between the measured net formation rate for SO3 and that calculated on the basis of reactions (1) and (2) is obtained with the rate coefficients Reactions (1) and (2) are found to be nearly balanced in a substantial region of the flame. Here the data are more sensitive to the difference in activation energies, as opposed to a particular value for either. Implications of this observation on the uncertainty of the deduced temperature dependence for each reaction are discussed, as are some of the procedures used in the data analysis.  相似文献   

17.
Using BAC-MP4 potential-surface parameters, supplemented by an MP2 normal-mode analysis at one transition state, and statistical theoretical methods, we have computed thermal rate coefficients for the reactions, and Over the entire temperature range considered, 300 K < T < 3300 K, reaction (2) is the dominant product channel. The theoretical predictions are in excellent agreement with the experimental results available for k2 and k?1, the rate coefficient for the reverse of reaction (1). Modified Arrhenius expressions are given for k1, k?1, and k2. In addition, we identify and discuss a weakness in utilizing a Hartree-Fock normal-mode analysis in the prediction of k2. The present result for k2 is much smaller than that used in the initial modeling of the RAPRENOx process. The implications of this are discussed.  相似文献   

18.
The dissociation of singly to triply ionized isocyanic acid (HNCO) has been investigated by two- and three-dimensional covariance mapping techniques through electron impact ionization at an electron energy of 200 eV. The absolute cross sections for the various dissociation channels of up to triply ionized HNCO have been measured. The HNCO dications dissociate mostly into ion pairs, while the HNCO trications dissociate mostly into ion triples, both through all the possible bond cleavages and charge allocations. Some major ion-pair dissociation channels of HNCO2+ are supposed to be sequential dissociation through initial charge separation. The metastable decay traces caused by HNCO(2+)-->H(+)+NCO+ and HNCO(+)-->HCO(+)+N have been observed on the covariance map.  相似文献   

19.
The dissociation of 1, 2 and 4% 1,4-dioxane dilute in krypton was studied in a shock tube using laser schlieren densitometry, LS, for 1550-2100 K with 56 ± 4 and 123 ± 3 Torr. Products were identified by time-of-flight mass spectrometry, TOF-MS. 1,4-dioxane was found to initially dissociate via C-O bond fission followed by nearly equal contributions from pathways involving 2,6 H-atom transfers to either the O or C atom at the scission site. The 'linear' species thus formed (ethylene glycol vinyl ether and 2-ethoxyacetaldehyde) then dissociate by central fission at rates too fast to resolve. The radicals produced in this fission break down further to generate H, CH(3) and OH, driving a chain decomposition and subsequent exothermic recombination. High-level ab initio calculations were used to develop a potential energy surface for the dissociation. These results were incorporated into an 83 reaction mechanism used to simulate the LS profiles with excellent agreement. Simulations of the TOF-MS experiments were also performed with good agreement for consumption of 1,4-dioxane. Rate coefficients for the overall initial dissociation yielded k(123Torr) = (1.58 ± 0.50) × 10(59) × T(-13.63) × exp(-43970/T) s(-1) and k(58Torr) = (3.16 ± 1.10) × 10(79) × T(-19.13) × exp(-51326/T) s(-1) for 1600 < T < 2100 K.  相似文献   

20.
Ignition delay times for cyclopentane/air and cyclohexane/air mixtures were measured in a shock tube at temperatures of 847–1379 K, pressures of 11–61 atm, and equivalence ratios of ? = 1.0, 0.5, and 0.25. Ignition times were determined using electronically excited OH emission monitored through the shock tube endwall and piezoelectric pressure measurements made in the shock tube sidewall. The dependence of ignition time on pressure, temperature, and equivalence ratio is quantified and correlations for ignition time formulated. Measured ignition times are compared to kinetic modeling predictions from four recently published mechanisms. The data presented provide a database for the validation of cycloalkane kinetic mechanisms at the elevated pressures found in practical combustion engines. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 624–634, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号