首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flash photolysis of CH3CHO and H2CO in the presence of NO has been investigated by the intracavity laser spectroscopy technique. The decay of HNO formed by the reaction HCO + NO → HNO + CO was studied at NO pressures of 6.8–380 torr. At low NO pressure HNO was found to decay by the reaction HNO + HNO → N2O + H2O. The rate constant of this reaction was determined to be k1 = (1.5 ± 0.8) × 10?15 cm3/s. At high NO pressure the reaction HNO + NO → products was more important, and its rate constant was measured to be k2 = (5 ± 1.5) × 10?19 cm3/s. NO2 was detected as one of the products of this reaction. Alternative mechanisms for this reaction are discussed.  相似文献   

2.
Potential-energy surfaces for various channels of the HNO+NO2 reaction have been studied at the G2M(RCC,MP2) level. The calculations show that direct hydrogen abstraction leading to the NO+cis-HONO products should be the most significant reaction mechanism. Based on TST calculations of the rate constant, this channel is predicted to have an activation energy of 6–7 kcal/mol and an A factor of ca. 10−11 cm3 molecule−1 s−1 at ambient temperature. Direct H-abstraction giving NO+trans-HONO has a high barrier on PES and the formation of trans-HONO would rather occur by the addition/1,3-H shift mechanism via the HN(O)NO2 intermediate or by the secondary isomerization of cis-HONO. The formation of NO+HNO2 can take place by direct hydrogen transfer with the barrier of ca. 3 kcal/mol higher than that for the NO+cis-HONO channel. The formation of HNO2 by oxygen abstraction is predicted to be the least significant reaction channel. The rate constant calculated in the temperature range 300–5000 K for the lowest energy path producing NO+cis-HONO gave rise to © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 729–736, 1998  相似文献   

3.
The effects of NO on the decomposition of CH3ONO have been investigated in the temperature range 450–520 K at a constant pressure of 710 torr using He as buffer gas. The measured time-dependent concentration profiles of CH3ONO, NO, N2O, and CH2O can be quantitatively accounted for with a general mechanism consisting of various reactions of CH3O, HNO, and (HNO)2. The results of kinetic modeling with sensitivity analyses indicate that the disappearance rate of CH3ONO is weakly affected by NO addition, whereas that of the HNO intermediate strongly altered by the added NO. In the presence of low NO concentrations, the modeling of N2O yields leads to the rate constant for the bimolecular reaction, HNO + HNO → N2O + H2O (25): In the presence of high NO concentrations (PNO > 50 torr), the modeling of CH2O yields gives the rate constant for the termolecular radical formation channel, HNO + 2NO → HN2O + NO2 (35): Discussion on the mechanisms for reactions (25) and (35), and the alkyl homolog of (35), RNO + 2NO, is presented herein. © John Wiley & Sons, Inc.  相似文献   

4.
The kinetics and mechanism of the thermal reduction of NO by H2 have been investigated by FTIR spectrometry in the temperature range of 900 to 1225 K at a constant pressure of 700 torr using mixtures of varying NO/H2 ratios. In about half of our experimental runs, CO was introduced to capture the OH radical formed in the system with the well-known, fast reaction, OH + CO → H + CO2. The rates of NO decay and CO2 formation were kinetically modeled to extract the rate constant for the rate-controlling step, (2) HNO + NO → N2O + OH. Combining the modeled values with those from the computer simulation of earlier kinetic data reported by Hinshelwood and co-workers (refs. [3] and [4]), Graven (ref.[5]), and Kaufman and Decker (ref. [6]) gives rise to the following expression: . This encompasses 45 data points and covers the temperature range of 900 to 1425 K. RRKM calculations based on the latest ab initio MO results indicate that the reaction is controlled by the addition/stabilization processes forming the HN(O)NO intermediate at low temperatures and by the addition/isomerization/decomposition processes producing N2O + OH above 900 K. The calculated value of k2 agrees satisfactorily with the experimental result. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
The kinetics and mechanism for the reaction of NH2 with HNO have been investigated by ab initio calculations with rate constant prediction. The potential energy surface of this reaction has been computed by single‐point calculations at the CCSD(T)/6‐311+G(3df, 2p) level based on geometries optimized at the CCSD/6‐311++G(d, p) level. The major products of this reaction were found to be NH3 + NO formed by H‐abstraction via a long‐lived H2N???HNO complex and the H2NN(H)O radical intermediate formed by association with 26.9 kcal/mol binding energy. The rate constants for formation of primary products in the temperature range of 300–3000 K were predicted by variational transition state or RRKM theories. The predicted total rate constants at the 760 Torr Ar pressure can be represented by ktotal = 3.83 × 10?20 × T+2.47exp(1450/T) at T = 300–600 K; 2.58 × 10?22 × T+3.15 exp(1831/T) cm3 molecule?1 s?1 at T = 600?3000 K. The branching ratios of major channels at 760 Torr Ar pressure are predicted: k1 + k3 + k4 producing NH3 + NO accounts for 0.59–0.90 at T = 300–3000 K peaking around 1000 K, k2 accounts for 0.41–0.03 at T = 300–600 K decreasing with temperature, and k5 accounts for 0.07–0.27 at T > 600 K increasing gradually with temperature. The NH3 + NO formation rate constant was found to be a factor of 3–10 smaller than that of the isoelectronic reaction CH3 + HNO producing CH4 + NO, which has been shown to take place by barrierless H‐abstraction without involving a hydrogen‐bonding complex as in the NH2 case. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 677–677, 2009  相似文献   

6.
The reaction NO + O3 → NO2 + O2 has been studied in a 220-m3 spherical stainless steel reactor under stopped-flow conditions below 0.1 mtorr total pressure. Under the conditions used, the mixing time of the reactants was negligible compared with the chemical reaction time. The pseudo-first-order decay of the chemiluminescence owing to the reaction of ozone with a large excess of nitric oxide was measured with an infrared sensitive photomultiplier. One hundred twenty-nine decays at 18 different temperatures in the range of 283–443 K were evaluated. A weighted least-squares fit to the Arrhenius equation yielded k = (4.3 ± 0.6) × 10?12 exp[-(1598 ± 50)/T] cm3/molecule sec (two standard deviations in brackets). The Arrhenius plot showed no curvature within experimental accuracy. Comparison with recent results of Birks and co-workers, however, suggests that a nonlinear fit, as proposed by these authors, is more appropriate over an extended temperature range.  相似文献   

7.
The reactions of N2O with NO and OH radicals have been studied using ab initio molecular orbital theory. The energetics and molecular parameters, calculated by the modified Gaussian-2 method (G2M), have been used to compute the reaction rate constants on the basis of the TST and RRKM theories. The reaction N2O + NO → N2 + NO2 (1) was found to proceed by direct oxygen abstraction and to have a barrier of 47 kcal/mol. The theoretical rate constant, k1 = 8.74 × 10−19 × T2.23 exp (−23,292/T) cm3 molecule−1 s−1, is in close agreement with earlier estimates. The reaction of N2O with OH at low temperatures and atmospheric pressure is slow and dominated by association, resulting in the HONNO intermediate. The calculated rate constant for 300 K ≤ T ≤ 500 K is lower by a few orders than the upper limits previously reported in the literature. At temperatures higher than 1000 K, the N2O + OH reaction is dominated by the N2 + O2H channel, while the HNO + NO channel is slower by 2–3 orders of magnitude. The calculated rate constants at the temperature range of 1000–5000 K for N2O + OH → N2 + O2H (2A) and N2O + OH → HNO + NO (2B) are fitted by the following expressions: in units of cm3 molecule −1s−1. Both N2O + NO and N2O + OH reactions are confirmed to enhance, albeit inefficiently, the N2O decomposition by reducing its activation energy. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Measurements of the rate coefficient of the reaction (O3P) + NO2 → O2 + NO have been made at 296°K and 240°K, using the technique of NO2* chemiluminescent decay. Values of 9.3 × 10?12 cm3 molec?1 sec?1 at 296°K and 10.5 × 10?12 cm3 molec?1 sec?1 at 240°K were obtained, in excellent agreement with the recent results of Davis, Herron, and Huie [1]. The earlier lower values may have resulted from loss of NO2 on surfaces.  相似文献   

9.
The rate coefficients of the reactions of NCO radicals with NO and NO2: (1) NCO + NO → products (293–836 K) and : (2) NCO + NO2 → products (294–774 K) were measured by means of laser photolysis and laser induced fluorescence technique in the indicated temperature ranges. NCO radicals were produced from the reaction of CN, from photodissociation of ICN or BrCN, with O2. The concentration of NCO was monitored with a dye laser set at 414.95 nm. We determined k1 = 1.73 × 10?5 T?2.01 exp(?470/T) cm3 molecule?1 s?1 that agrees with published results at room temperature and confirms the temperature dependence of an early report. A non-Arrhenius negative temperature dependence of k2 was observed in this work that agrees satisfactorily with results for a shock tube18 near 1250 K. We obtained k2 = 6.4 × 10?10 T?0.646 exp(164/T) cm3 molecule?1 s?1 for 1250 K ≥ T ≥ 294 K by combining data of these two measurements. Our result at 294 K and the temperature dependence disagree with results of two previous investigations. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
Flash photolysis of NO coupled with time resolved detection of O via resonance fluorescence has been used to obtain rate constants for the reaction O + NO + N2 → NO2 + N2 at temperatures from 217 to 500 K. The measured rate constants obey the Arrhenius equation k = (15.5 ± 2.0) × 10?33 exp(1160 ± 70)/1.987 T] cm6 molecule?2 s?1. An equally acceptable equation describing the temperature dependence of k is k = 3.80 × 10?27/T1.82 cm6 molecule?2 s?1. These results are discussed and compared with previous work.  相似文献   

11.
The reaction chemistry of C2N2? Ar and C2N2? NO? Ar mixtures has been investigated behind incident shock waves. Progress of the reaction was monitored by observing the cyano radical (CN) in absorption at 388.3 nm. A quantitative spectroscopic model was used to determine concentration histories of CN. From initial slopes of CN concentration during cyanogen pyrolysis, the rate constant for C2N2 + M → 2CN + M (1) was determined to be k1 = (4.11 ± 1.8) × 1016 exp(?47,070 ± 1400/T) cm3/mol · s. A reaction sequence for the C2N2? NO system was developed, and CN profiles were computed. By comparison with experimental CN profiles the rate constant for the reaction CN + NO → NCO + N (3) was determined to be k3 = 10(14.0 ± 0.3) exp(?21,190 ± 1500/T) cm3/mol · s. In addition, the rate of the four-centered reaction CN + NO → N2 + CO (2) was estimated to be approximately three orders of magnitude below collision frequency.  相似文献   

12.
Kinetics and mechanisms for the reactions of HNO with CH3 and C6H5 have been investigated by ab initio molecular orbital (MO) and transition‐state theory (TST) and/or Rice‐Ramsperger‐Kassel‐Marcus/Master Equation (RRKM/ME) calculations. The G2M(RCC, MP2)//B3LYP/6‐31G(d) method was employed to evaluate the energetics for construction of their potential energy surfaces and prediction of reaction rate constants. The reactions R + HNO (R = CH3 and C6H5) were found to proceed by two key product channels giving (1) RH + NO and (2) RNO + H, primarily by direct abstraction and indirect association/decomposition mechanisms, respectively. As both reactions initially occur barrierlessly, their rate constants were evaluated with a canonical variational approach in our TST and RRKM/ME calculations. For practical applications, the rate constants evaluated for the atmospheric‐pressure condition are represented by modified Arrhenius equations in units of cm3 mol?1 s?1 for the temperature range 298–2500 K: κ1A = 1.47 × 1011 T 0.76 exp[?175/ T ], κ2A = 8.06 × 103 T 2.40 exp[?3100/ T ], κ1B = 3.78 × 105 T 2.28 exp[230/ T ], and κ2B = 3.79 × 109 T 1.19 exp[?4800/ T ], where A and B represent CH3 and C6H5 reactions, respectively. Based on the predicted rate constant at 1 atm pressure for R + HNO → RNO + H, we estimated their reverse rate constants for R + HNO production from H + RNO in units of cm3 mol?1 s?1: κ?2A′ = 7.01 × 1010 T 0.84 exp[120/ T ] and κ?2B′ = 2.22 × 1019 T ?1.01 exp[?9700/ T ]. The heats of formation at 0 K for CH3NO, CH3N(H)O, CH3NOH, C6H5N(H)O, and C6H5NOH have been estimated to be 18.6, 18.1, 22.5, 47.2, and 50.7 kcal mol?1 with an estimated ±1 kcal mol?1 error. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 261–274, 2005  相似文献   

13.
Reactions of CF3Br with H atoms and OH radicals have been studied at room temperature at 1–2 torr pressures in a discharge flow reactor coupled to an EPR spectrometer. The rate constant of the reaction H + CF3Br → CF3 + HBr (1) was found to be k1 = (3.27 ± 0.34) × 10?14 cm3/molec·sec. For the reaction of OH with CF3Br (8) an upper limit of 1 × 10?15 cm3/molec·sec was determined for k8. When H atoms were in excess compared to NO2, used to produce OH radicals, a noticeable reactivity of OH was observed as a result of the reaction OH + HBr → H2O + Br, HBr being produced from reaction (1).  相似文献   

14.
Rate constants for the radical-radical reactions N + OH → NO + H (1), and O + OH → O2 + H (2) have been measured for the first time by a direct method. In each experiment, a known concentration of N or O atoms is established in a discharge-flow system. OH radicals are then created by flash photolysis of H2O present in the flowing gas, and the disappearance of OH is monitored by time-resolved observations of its resonance fluorescence. The experiments yield K1 = (5.0 = 1.2) × 10?11 cm3 molecule?1 s?1 and k2 = (3.8 = 0.9) × 10?11 cm3 molecule?1 s?1, for the reactions at 298 = 5 K.  相似文献   

15.
The kinetics of C2H5O2 and C2H5O2 radicals with NO have been studied at 298 K using the discharge flow technique coupled to laser induced fluorescence (LIF) and mass spectrometry analysis. The temporal profiles of C2H5O were monitored by LIF. The rate constant for C2H5O + NO → Products (2), measured in the presence of helium, has been found to be pressure dependent: k2 = (1.25±0.04) × 10?11, (1.66±0.06) × 10?11, (1.81±0.06) × 10?11 at P (He) = 0.55, 1 and 2 torr, respectively (units are cm3 molecule?1 s?1). The Lindemann-Hinshelwood analysis of these rate constant data and previous high pressure measurements indicates competition between association and disproportionation channels: C2H5O + NO + M → C2H5ONO + M (2a), C2H5O + NO → CH3CHO + HNO (2b). The following calculated average values were obtained for the low and high pressure limits of k2a and for k2b : k = (2.6±1.0) × 10?28 cm6 molecule?2 s?1, k = (3.1±0.8) × 10?11 cm3 molecule?1 s?1 and k2b ca. 8 × 10?12 cm3 molecule?1 s?1. The present value of k, obtained with He as the third body, is significantly lower than the value (2.0±1.0) × 10?27 cm6 molecule?2 s?1 recommended in air. The rate constant for the reaction C2H5O2 + NO → C2H5O + NO2 (3) has been measured at 1 torr of He from the simulation of experimental C2H5O profiles. The value obtained for k3 = (8.2±1.6) × 10?12 cm3 molecule?1 s?1 is in good agreement with previous studies using complementary methods. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
The thermal reaction of HNCO with NO2 has been studied in the temperature range of 623 to 773 K by FTIR spectrometry. Major products measured are CO2 and NO with a small amount of N2O. Kinetic modeling of the time resolved concentration profiles of the reactants and products, aided by the thermochemical data of various likely reactive intermediates computed by means of the BAC-MP4 method, allows us to conclude that the reaction is initiated exclusively by a new bimolecular process: with a rate constant, k1 = 2.5 × 1012e?13,100/T cm3/mols. The well-known bimolecular reaction is the only strong competitive process in this important reactive system throughout the temperature range studied. Kinetic modeling of NO formation and NO2 decay rates gave rise to values of k10 which were in close agreement with literature data. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
A pulse radiolysis system was used to study the kinetics of the reaction of FC(O)O2 radicals with NO2. By monitoring the rate of the decay of NO2 using its absorption at 400 nm the reaction rate constant was determined to be (5.5 ± 0.6) × 10?12 cm3 molecule?1 s?1 at 296 K and 500–1000 mbar pressure of SF6 diluent. A long path length Fourier transform infrared spectrometer was used to investigate the thermal stability of the product FC(O)O2NO2. The rate of thermal decomposition of FC(O)O2NO2 was independent of the total pressure of N2 diluent over the range 100–700 torr and was fit by the expression k?3 = 6.0 × 1016 exp(?14150/T) s?1. The results are discussed in the context of the atmospheric chemistry of FCOx radicals. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Vibrational chemiluminescence in the Δν1 = Δν3 = ?1 band of NO2 is observed both in the O + NO and O3 + NO reactions and shown to be emitted by molecules with up to 11 000 cm?1 of vibrational energy. Quenching rate constants of NO23 are estimated ranging from about 6 × 10?14 for Ar to about 3 × 10?12 cm3 s?1 for NO2. The ratio of vibrational to electronic emission is 0.06 ± 0.03 for O + NO and 5.3 ± 1.0 for O3 + NO. It is suggested that vibrationally excited NO2 is a major product of that channel of the O3 + NO reaction which forms ground-state NO2(2A1) directly.  相似文献   

19.
The reactions Br + NO2 + M → BrNO2 + M (1) and I + NO2 + M → INO2 + M (2) have been studied at low pressure (0.6-2.2 torr) at room temperature and with helium as the third body by the discharge-flow technique with EPR and mass spectrometric analysis of the species. The following third order rate constants were found k1(0) = (3.7 ± 0.7) × 10?31 and k2(0) = (0.95 ± 0.35) × 10?31 (units are cm6 molecule?2 s?1). The secondary reactions X + XNO2X2 + NO2 (X = Br, I) have been studied by mass spectrometry and their rate constants have been estimated from product analysis and computer modeling.  相似文献   

20.
Rate constants for the reaction O(3P) + SO2 + M have been determined over the temperature range of 299°–440°K, using a flash photolysis–NO2 chemiluminescence technique. For M?Ar, the Arrhenius expression was obtained. At room temperature k2Ar = (1.05 ± 0.21) × 10?33 cm6/molec2·sec. In addition, the rate constants k2 = (1.37 + 0.27) × 10?33 cm6/molec2·sec, k2 = (9.5 ± 3.0) ± 10?33 cm6/molec2·sec, k3 = (1.1 ± 0.2) ± 10?31 cm6/molec2·sec, and k3 = (2.6 ? 0.9) ± 10?31 cm6/molec2·sec were obtained at room temperature where k3M is the rate constant for the reaction O + NO + M → NO2 + M. The rate data are compared and discussed with literature values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号