首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 512 毫秒
1.
Capillary electrophoretic separation of samples of physiological origin typically have both poor resolution and efficiency due to destacking. We have previously reported a stacking method for concentration of catecholamines in artificial dialysate, or Ringer's solution. However, pH-mediated sample stacking of other cations has not been investigated. In this report, pH-mediated stacking has been extended to eletripan, dofetilide, doxazosin, sildenafil, UK-103,320, UK-202,581, and CP-122,288. These compounds were chosen without prior structural screening except that they were cationic at the pH of our background electrolyte (BGE). Capillary electrophoretic behavior of samples in BGE is compared with those of samples in Ringer's solution with and without pH-mediated acid stacking. Results indicate that the peak heights and efficiencies for acid-stacked samples are increased compared to the unstacked samples in Ringer's solution or BGE. For example, the peak efficiencies for 5 s injections of eletriptan in BGE and Ringer's solution are 138,000 and 72,000 plates, respectively. In contrast, a 10 s injection of eletriptan followed by acid injection for 16 s produces a peak with 246,000 plates. Evaluation of the stacking effect was performed by comparison of the peak height at similar peak efficiencies for samples in Ringer's solution with and without stacking. Using this method, pH-mediated acid stacking provides a 10- to 27-fold sensitivity enhancement for the seven cations.  相似文献   

2.
When using capillary electrophoresis (CE) for the analysis of biological samples, it is often necessary to employ techniques to overcome peak-broadening that results from having a high-conductivity sample matrix. To improve the concentration detection limits and separation efficiency of cationic pharmaceuticals in CE, pH-mediated acid stacking was performed to electrofocus the sample, improving separation sensitivity for the analyzed cations by 60-fold. However, this method introduces a large titrated acid plug into the capillary. To overcome the limitations this low-conductivity plug poses to stacking, the plug was removed prior to the separation step by applying reverse pressure to force it out of the anode of the capillary. Employing this technique allows for roughly twice the volume of sample to be injected. A maximum sample injection time of 240 s was attainable with baseline peak resolution compared to a maximum sample injection time of 120 s without reverse pressure, leading to a twofold decrease in the limits of detection of the analytes used. Separation efficiency overall is also improved when utilizing the reverse pressure step. For example, a 60 s sample injection time results in 94,000 theoretical plates as compared to 60,500 theoretical plates without reverse pressure. This reverse-pressure method was used for detection and quantitation of several cationic pharmaceuticals that were prepared in Ringer's solution to simulate microdialysis sampling conditions.  相似文献   

3.
Arnett SD  Lunte CE 《Electrophoresis》2007,28(20):3786-3793
A technique has been developed to enhance analyte focusing for CE for the analysis of physiological samples. High-ionic-strength samples are titrated to low-ionic-strength on-line using pH-mediated sample stacking in conjunction with a dynamic pH junction. This method concentrates analytes by reducing their electrophoretic mobility during field-amplification. Parameters responsible for enhanced focusing were investigated, and an enhanced pH-mediated stacking method was optimized for anionic nucleosides. The process results in ultra-narrow peak widths, for example, 0.28 s for thymidine with a 10 min analysis time. Peak width and resolution with the enhanced stacking method were also compared to normal base stacking and electrokinetic injection. With this technique, mass-loading capacity can be increased without degradation in peak shape and resolution is dramatically improved.  相似文献   

4.
Online sample concentration of acidic drugs by transient isotachophoresis (t-ITP) with the injection of a base is described in capillary zone electrophoresis (CZE). A positively coated capillary was conditioned with background electrolyte (ammonium acetate at pH 6). A long plug of sample solution (S) prepared in ammonium acetate was then hydrodynamically injected followed by the base (tetrapropylammonium hydroxide). A negative voltage was applied and caused the hydroxide ions from the base to penetrate the S zone and created a pH junction that swept through the S zone. The analytes stack at the junction where the mechanism of focusing was transient ITP with the acetate and hydroxide ions as leading and terminating ions, respectively. The concentrated analytes separated in co-EOF CZE once the hydroxide was exhausted. The base stacking strategy was tested using hypolipidemic, nonsteroidal anti-inflammatory, and diuretic drugs, and afforded 19-37 improvements in peak height.  相似文献   

5.
Riaz A  Chung DS 《Electrophoresis》2005,26(3):668-673
Transient isotachophoresis (TITP) is usually performed under low-electroosmotic flow (EOF) conditions using a coated capillary or a low pH background electrolyte. We used a bare fused-silica capillary for TITP stacking of anionic complexes of some heavy metals under high-EOF conditions (pH 9.0). The sample component chloride as a leading electrolyte induced stacking by an isotachophoretic mechanism and the complexing agent 4-(2-pyridylazo) resorcinol (PAR) acted as a terminating electrolyte. The optimized background electrolyte was composed of 150 mM N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid, 127 mM triethylamine, and 0.1 mM PAR at pH 9.0. The strong EOF at pH 9.0 pulled the analytes against their mobilities toward the outlet side, allowing a separation in the normal polarity mode. The stacking efficiency, reproducibility, analysis time, and sample loading capacity in coated and bare capillaries were compared. The stacking efficiency and reproducibility were higher and the analysis time was shorter in the coated capillary. However, a larger volume of a sample could be injected in the bare capillary to achieve detection limits comparable to those for the coated one without compromising the resolution between the analyte peaks. The limits of detection (S/N = 3) were in the sub-ppb range for the selected metals (Fe2+, 0.3 ppb; Ni2+, 0.16 ppb; and Zn2+, 0.8 ppb) in a standard saline sample with 250 mM NaCl matrix. The proposed method was successfully applied to the analysis of reference urine samples and human urine samples.  相似文献   

6.
A capillary electrophoresis method with UV-absorbance detection was studied and optimized for the determination of underivatized amino acids in urine. To improve concentration sensitivity the utility of in-capillary analyte stacking via dynamic pH junction was investigated with phenylalanine (Phe) and tyrosine (Tyr) as model amino acids. Before sample injection, a plug of ammonium hydroxide solution was injected to enable analyte concentration. Samples were 1:1 (v/v) mixed with background electrolyte (1 M formic acid) prior to injection. The effect of the injected sample volume, and the injected ammonium hydroxide volume and concentration on analyte stacking and separation performance was investigated. The optimal volume of ammonium hydroxide depended on the injected sample volume. Using a dynamic pH junction good resolution (1.4) was obtained for a sample injection volume of 10% of the capillary (196 nl) with Phe and Tyr dissolved in water. Limits of detection (LODs) were 0.036 and 0.049 μM for Phe and Tyr, respectively. For urine samples, the optimized procedure comprised a 1.7-nl injection of 12.5% ammonium hydroxide, followed by a 196-nl injection of urine spiked with Phe and Tyr. Satisfactory resolution was obtained and amino acid peak widths at half height were only 1.6 s indicating efficient stacking. Calibration plots for Phe and Tyr in urine showed good linearity (R(2) > 0.96) in the concentration range 10-175 μM, and LODs for Phe and Tyr were 0.054 and 0.019 μM, respectively. RSDs for peak area and migration time for Phe and Tyr were below 7.5% and 0.75%, respectively.  相似文献   

7.
This contribution is aimed at providing a survey of the limitations of the peak-height technique. It is shown that the shape and the slope of calibration curves give a precise insight into the separation mechanism and can warn the analyst against improper selection of background electrolyte or sample dilution. This work investigates three typical situations where the sample contains (i) the minor analyte only, (ii) the minor analyte and a nonstacking bulk component, (iii) the minor analyte and a stacking bulk component, and various modes of measurement of the calibration curves differing in the medium used for the dilution of the original sample (water, background electrolyte, solution of the bulk component). Based on simple theoretical models, the shapes of the calibration curves are derived and elucidated for all modes, clearly demonstrating that only a few modes can provide useful results while most of them seem useless for quantitation. The knowledge of regularities affecting the character of calibration curves can be used for optimization of the analysis so that reliable results and highest attainable sensitivity can be reached. The outcome of this study brings a clear instruction how to successfully quantitate trace analytes even in samples with a complex and variable matrix*.  相似文献   

8.
Several on-column sample preconcentration modes--large-volume sample stacking using the EOF pump (LVSEP), LVSEP with anion-selective exhaustive injection (LVSEP-ASEI) and field-amplified sample injection with sample matrix removal using the electroosmotic flow (EOF) pump (FAEP)--were used to analyze some nonsteroidal anti-inflammatory drugs (NSAIDs) by capillary electrophoresis, and then compared. Methanol was the background electrolyte solvent to suppress the EOF. The effect of the type and length of the solvent plug, and the sample injection time were investigated in FAEP to determine the conditions that provided the best response. LVSEP, LVSEP-ASEI, and FAEP improved the sensitivity of the peak area by 100-, 1200-, and 1800-fold, respectively. The methodology developed, in combination with solid-phase extraction (SPE), was applied to the analysis of water samples.  相似文献   

9.
This paper describes the use of reversed-phase, reversed-polarity head-column field-amplified sample stacking (HCFASS) for on-line sample concentration in conventional capillary electrophoresis. The effective stacking efficiency was determined as a function of sodium hydroxide concentration in the sample matrix. Results concur with theoretical predictions where stacking efficiency depends on the conductivity (electric field strength) and electrophoretic mobility in the sample matrix solution. Fluorescein isothiocyanate-derivatized aniline and 2,4-dimethylaniline were dissolved in sodium hydroxide (800 microM), separated in a phosphate running buffer (0.05 M, pH 9.0) and detected utilising laser-induced fluorescence. The use of reversed-phase, reversed-polarity HCFASS with laser-induced fluorescence detection yielded sensitivity improvements with respect to normal injection schemes in excess of three orders of magnitude, and a limit of detection as low as 10(-13) M.  相似文献   

10.
The stacking effect on carboxylated magnetite core–shell nanoparticles using sodium borate buffer pH 9.5 as the background electrolyte is presented. The ionic strength of the background electrolyte ranged from 5 to 100 mM, and the ionic strength of a sample zone ranged from 5 to 100 mM. Moreover, water was used as the sample dispersant. Both stacking and de‐stacking effects were observed when conductivities of the sample zone and the background electrolyte differed. An explanation of carboxylated magnetic core‐shell nanoparticles behavior was suggested based on the Derjaguin–Landau–Verwey–Overbeek theory supposing that the aggregation point is defined by the energetic barrier as the sum of energies given by electrostatic interactions and Van der Waals interactions. Moreover, the stacking conditions were applied for the evaluation of the lowest detectable dilution of magnetic nanoparticles. The carboxylated magnetic nanoparticles were dispersed in 10 mM borate/NaOH pH 9.5 and injected for 60 s to the background electrolyte composed of 100 mM borate/NaOH pH 9.5 that allowed the detection of 100‐fold diluted nanoparticles.  相似文献   

11.
A flow injection analysis-capillary electrophoresis system has been used for on-line flow stacking of 11 US Environmental Protection Agency priority phenol pollutants. Samples containing low concentrations of phenols dissolved in deionised water are continuously delivered to the capillary opening by means of a peristaltic pump. The sample components stack at the boundary between the highly conductive separation electrolyte and the introduced sample. By selecting an appropriate electrolyte and stacking conditions the movement of the electrolyte solution inside the capillary can be reduced, thereby improving the stacking efficiency. The electrolyte used here contained 20 mM phosphate, 8% 2-butanol, and 0.001% hexamethonium bromide at pH 11.95, and the stacking was carried out at 2 kV for 240 s. These conditions allowed up to 2000-fold preconcentration of the selected phenols. No matrix removal was necessary.  相似文献   

12.
Tu C  Zhu L  Ang CH  Lee HK 《Electrophoresis》2003,24(12-13):2188-2192
Large-volume sample stacking (LVSS) is an effective on-capillary sample concentration method in capillary zone electrophoresis, which can be applied to the sample in a low-conductivity matrix. NaOH solution is commonly used to back-extract acidic compounds from organic solvent in sample pretreatment. The effect of NaOH as sample matrix on LVSS of haloacetic acids was investigated in this study. It was found that the presence of NaOH in sample did not compromise, but rather help the sample stacking performance if a low pH background electrolyte (BGE) was used. The sensitivity enhancement factor was higher than the case when sample was dissolved in pure water or diluted BGE. Compared with conventional injection (0.4% capillary volume), 97-120-fold sensitivity enhancement in terms of peak height was obtained without deterioration of separation with an injection amount equal to 20% of the capillary volume. This method was applied to determine haloacetic acids in tap water by combination with liquid-liquid extraction and back-extraction into NaOH solution. Limits of detection at sub-ppb levels were obtained for real samples with direct UV detection.  相似文献   

13.
T Hirokawa  H Okamoto  N Ikuta 《Electrophoresis》2001,22(16):3483-3489
Operational modes for transient isotachophoretic preconcentration capillary zone electrophoresis (tr-ITP-CZE) were studied by using 5 microM and 0.5 microM rare earth mixtures as analytes in comparison with field-enhanced sample stacking. After examination of several operational modes for tr-ITP, it was found that tr-ITP effectively occured even if both the leading electrolyte and the terminating electrolyte were injected after the sample plug. This was explained as the result of a field-enhanced stacking for both sample components and the leading and terminating ions. The observed theoretical plate numbers were 4-20 times higher than those obtained by normal stacking; and the estimated low limit of detectable concentration of rare-earth elements (REE) was ca. 0.1 microM which was 2.5 times lower compared to normal stacking. For the 0.5 microM sample, a concentration factor of 20 000 could be achieved after only tr-ITP.  相似文献   

14.
Three on-column preconcentration techniques were compared to analyse a group of nonsteroidal anti-inflammatory drugs (NSAIDs) using micellar electrokinetic capillary chromatography (MEKC) under pH-suppressed electroosmotic flow (EOF) in water samples. The analysed drugs were ibuprofen, fenoprofen, naproxen, ketoprofen, and diclofenac sodium. The micellar background electrolyte (BGE) solution was formed by 75 mM sodium dodecyl sulfate (SDS), 40% (v/v) acetonitrile, and 25 mM sodium phosphate at pH 2.5. When this BGE solution was used the applied voltage was reversed, -10 kV, and the drugs were separated within 20 min. The on-column preconcentration modes, characterised all of them for the sample matrix removal out of the capillary by itself under a reverse potential at the same time as the EOF was reduced, were stacking with reverse migrating micelles (SRMM), stacking with reverse migrating micelles-anion selective exhaustive injection (SRMM-ASEI), and field-enhanced sample injection with reverse migrating micelles (FESI-RMM). The sensitivity was improved up to 154-, 263-, and 63-fold, respectively when it was calculated through the peaks height. The optimised methods were validated with spiked mineral water by combining off-line solid-phase extraction (SPE) and the proposed on-line sample stacking strategies. The detection limits (LODs) of NSAIDs in mineral water were at ng/L levels.  相似文献   

15.
Electrokinetic supercharging is one of the most powerful sample‐stacking methods that combines field amplified sample injection and transient ITP. In counter‐flow electrokinetic supercharging, a constant counter pressure is applied during sample injection in order to counterbalance the movement of the injected sample zone. As a result, there will be a pronounced increase in the amount of sample injected and the portion of the capillary available for electrophoresis. In this report, counter‐flow electrokinetic supercharging optimization factors such as the electric field application in the constant voltage and constant current modes, the magnitude of counter pressure, and the terminating electrolyte concentrations were investigated. The enrichments obtained with a 30 min injection of 10 nM catecholamines in 5 mM terminating electrolyte solution in the constant voltage mode applying a counter pressure of 1.3 psi were 41000‐fold for dopamine, 50 000‐fold for norepinephrine, and 32 000‐fold for epinephrine, yielding detection limits of 1.3, 1.4, and 1.2 nM, respectively, with absorbance detection at 200 nm.  相似文献   

16.
A novel on‐line synergistic proconcentration strategy coupling field‐amplified sample stacking and micelle to cyclodextrin stacking for cationic analytes in capillary zone electrophoresis has been proposed and applied for the separation and determination of two alkaloids, matrine, and oxymatrine in complicated matrix samples. The approach was performed by the long injection of sample in a low‐conductivity sodium dodecyl benzene sulfonate solution followed by the injection of hydroxypropyl‐β‐cyclodextrin solution in higher conductivity. The stacking mechanism of this method has been expounded and parameters affecting stacking effect have been optimized in our study. Under the optimum experimental conditions, 169‐ and 218‐fold sensitivity improvements were achieved for matrine and oxymatrine when compared with normal injection. Analytical indicators including linearity, limits of detection, and reproducibility (intra‐ and inter‐day relative standard deviations) were evaluated. Moreover, sample matrix effect was studied using compound flavescent sophora and salicylic acid powder and spiked urine samples. The developed method is an attempt for the combination of micelle to cyclodextrin stacking with other stacking methods. It could be a good alternative choice for the determination of alkaloids in a complex sample matrix.  相似文献   

17.
In the present study, field amplified sample stacking (FASS) techniques in the nonaqueous capillary electrophoresis method (NACE) were introduced for the on-line concentration of the acrylamide to improve acrylamide detection at 210 nm by diode-array detection. Acetonitrile (ACN) as a nonaqueous solvent permits acrylamide to be protonated through the change of its acid-base chemistry, allowing capillary electrophoretic separation of this compound. Choosing 30 mmol L(-1) HClO(4), 20 mmol L(-1) NaClO(4), 218 mmol L(-1) CH(3)COOH in ACN as the separation electrolyte and employing sample stacking methods, the LOD value of acrylamide was decreased to 2.6 ng mL(-1) with electrokinetic injection and 4.4 ng mL(-1) with hydrodynamic injection. Optimized stacking conditions were applied to the determination of acrylamide in several foodstuffs. The method is simple, rapid, inexpensive, and widely applicable for the determination of acrylamide in food samples.  相似文献   

18.
An on-line sample stacking method, namely field-amplified sample injection, has been developed for the separation and determination of carnosine, anserine, and homocarnosine by capillary electrophoresis. Using electrokinetic injection, about 130- to 160-fold improvement of sensitivity was achieved without loss of separation efficiency when compared to conventional sample injection. For conventional injection, the samples were dissolved in running buffer and then hydrodynamically injected for 10 s (3.45 kPa). Various parameters affecting separation and sample stacking were optimized. Under optimum conditions, linear responses were obtained over two orders of magnitude and the detection limits (defined as S/N = 3) of carnosine, anserine, and homocarnosine were 1.5 x 10(-8) to 1.6 x 10(-8) mol/L.  相似文献   

19.
Theory of field-amplified sample stacking (FASS) also called field-enhanced sample stacking is reevaluated considering the early work of Chien, Burgi and Helmer. The classical theory presented by Chien, Helmer and Burgi predicts the existence of maxima, which are ascribed to the counteracting principles of zone focusing and hydrodynamic dispersion. In contrast to their work, we here focus on cationic analytes separated in an acidic background electrolyte providing a very low electroosmotic flow velocity. Therefore, peak broadening due to differences in the local electroosmotic flow velocities in different compartments of the capillary can be regarded to be negligible. Consequently, peak broadening resulting from hydrodynamic dispersion will not be the dominant limitation of the accessible enrichment efficiency. In our experimental studies we, however, obtain an optimum value for the field enhancement factor (maximum of the enrichment efficiency, when varying the electric conductivity of the sample and the size of the sample injection plug) corresponding to a 10-fold dilution of the BGE in the sample solution. Comparing these experimental data with data modeled according to the revised theory, we show that this limitation of the loadability is caused by the unavoidable decrease of the analyte migration velocity in the BGE compartment of the capillary when injecting of a sample plug of lower electric conductivity (decrease in the local electric field strength). The additional diffusional band broadening limits the obtainable enrichment efficiency.  相似文献   

20.
The reaction between α,α-dialkylated amino acids and amino acid N-carboxyanhydrides is slow leading to low concentrations of products (peptides). The detection by capillary electrophoresis of the analytes contained in such samples is therefore a challenging issue. In this work, on-line sample pre-concentration methods based on field-amplified sample stacking have been implemented and compared. Because of the high ionic strength present in the sample matrix, samples were diluted with an organic solvent prior to analysis to decrease the sample conductivity. Different modes of sample injection (field amplified sample injection (FASI), hydrodynamic normal sample stacking (NSS) or large volume sample stacking (LVSS)) were compared. Pre-concentration factors of 20 for FASI, about 30–40 for NSS and 60 for LVSS were obtained for the analysis of (l,l) dipeptide of valine in a large excess of isovaline and 0.2 M of ionic strength. For LVSS application and resolution optimisation, a new non-covalent coating based on the partial modification of the capillary surface was used to tune the electroosmotic flow magnitude and to pump the sample matrix out of the capillary. This on-line sample pre-concentration step allowed confirming that oligopeptides including α,α-dialkylated amino acids are formed during the reaction between α,α-dialkylated amino acids and N-carboxyanhydride amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号