首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
 以国产掺镱光纤为增益介质,利用国产泵浦源和光纤器件,构建了主振荡功率放大(MOPA)结构的全国产大功率全光纤激光器。激光器包括10 W种子激光器和高功率放大器两部分。在注入最大泵浦功率为356 W时,获得了245 W波长1 080 nm激光的稳定输出,光-光效率为69%。激光器单次连续出光时间约30 min,功率稳定性在1%以内。目前激光器输出功率受限于泵浦功率,增加泵浦源的数目有望进一步提高输出功率。  相似文献   

2.
Electrodeposited Ni–W alloy assisted by high-intensity ultrasound was evaluated considering the nominal power effect on the anticorrosive property. Temperature profiles demonstrated that using a nominal power of 400 W, the electrolytic bath at 30 °C reached values of 39 ± 1 °C. The maximum acoustic power corresponded to 6.7% of the nominal power value at 400 W. Increasing the nominal power from 0 to 400 W; the Ni content decreased from 85.3 to 75.2 wt%, and the W content increased from 15.1 to 25.1 wt%. The deposited coating at 200 W and 300 W had a smooth, homogeneous, and uniform surface. At 400 W, the acoustic cavitation promoted erosion, affecting the coating surface. X-ray diffraction analysis indicated that the nominal power of 200 W promoted electrodeposition of the Ni17W3 structure with the plane (1 1 1) as a preferred orientation. The crystallite size decreased for the planes (1 1 1) and (2 0 0) when increased nominal power from 100 to 200 W. The optimum condition for the improved corrosion resistance occurred with the nominal power of 200 W, providing a polarization resistance of 23.42 kΩ cm2.  相似文献   

3.
报道了Yb∶YAG双波长激光振荡阈值的理论结果,实验获得了连续双波长激光输出.实验中,采用紧凑的平凹腔结构、940nm光纤耦合LD端面泵浦方式,Yb∶YAG晶体作为激光晶体,采用10%、15%和20%的输出耦合镜,分别实现了单波长和双波长激光输出,在最高泵浦功率为20 W时,输出耦合率分别为10%、20%,最高获得3.94W的1 050nm激光和3.40 W的1 030nm激光,对应的光光转换效率分别为19.7%和17.0%;当输出耦合率为15%、泵浦功率为11.7 W时,获得0.79 W的双波长激光,对应的光光转换效率为6.8%,功率比为1∶1.3,通过光栅光谱仪测量得到双波长谱线中心分别为1 030.31nm和1 047.50nm;当1 030nm激光功率为3.0 W时,30min内输出功率RMS稳定性优于0.18%.该实验结果与理论分析相吻合,可应用于设计稳定可靠的掺Yb双波长激光器.  相似文献   

4.
We report a high-power picosecond optical parametric oscillator (OPO) synchronously pumped by a Yb fiber laser at 1.064 μm, providing 11.7 W of total average power in the near to mid-IR at 73% extraction efficiency. The OPO, based on a 50 mm MgO:PPLN crystal, is pumped by 20.8 ps pulses at 81.1 MHz and can simultaneously deliver 7.1 W of signal at 1.56 μm and 4.6 W of idler at 3.33 μm for 16 W of pump power. The oscillator has a threshold of 740 mW, with maximum signal power of 7.4 W at 1.47 μm and idler power of 4.9 W at 3.08 μm at slope efficiencies of 51% and 31%, respectively. Wavelength coverage across 1.43-1.63 μm (signal) and 4.16-3.06 μm (idler) is obtained, with a total power of ~11 W and an extraction efficiency of ~68%, with pump depletion of ~78% maintained over most of the tuning range. The signal and idler output have a single-mode spatial profile and a peak-to-peak power stability of ±1.8% and ±2.9% over 1 h at the highest power, respectively. A signal pulse duration of 17.3 ps with a clean single-peak spectrum results in a time-bandwidth product of ~1.72, more than four times below the input pump pulses.  相似文献   

5.
报道了采用888nIn的激光二极管(LD)泵浦Nd:LuVO4晶体得到1066nm的激光输出,其对应能级跃迁为4F3/2→4I11/2。在注入的泵浦功率为18.2W时,获得了11.3W的近红外1066nm激光输出;然后采用非线性晶体LiB。O。(LBO)进行腔内倍频,获得了533nm的绿激光输出,输出功率为4.3W,其光-光转换效率为23.6%,光束质量因子为M2=1.3,4h功率稳定度优于3.7%。  相似文献   

6.
Liu J  Zhang H  Wang Z  Wang J  Shao Z  Jiang M  Weber H 《Optics letters》2004,29(2):168-170
Received August 11, 2003 We report continuous-wave and actively Q-switched laser performance achieved with Nd:LuVO4 crystal for the 4F(3/2) --> 4I(1/2) transition (corresponding wavelength of 1065.8 nm) under high-power diode pumping. Continuous-wave output power of 12.55 W is obtained with an optical conversion efficiency of 50.2%. In actively Q-switched operation the average output power reaches 5.42 W at a pulse repetition frequency of 40 kHz with 18 W of pump power incident upon the crystal, yielding an optical conversion efficiency of 30.1%. The pulse energy and peak power reach 138 microJ and 16.2 kW, respectively, at a pulse repetition frequency of 25 kHz under a pump power of 14.2 W; the pulse duration is 8.5 ns.  相似文献   

7.
A high-power Er:YAG laser that is in-band pumped by a high-power cladding-pumped erbium-ytterbium codoped fiber laser operating at 1532 nm is reported. The Er:YAG laser produced 60.3 W of continuous-wave output at 1645.3 nm in a beam with M2 approximately equal to 3 for 82 W of incident pump power and 20 W of TEM00 output with M2 < 1.2 for 32.4 W of incident pump power. The slope efficiency with respect to incident pump power at pump powers of >20 W was approximately 81%. In the Q-switched mode of operation, a slightly modified resonator configuration incorporating an electro-optic Q switch produced pulses of approximately 4 mJ energy and approximately 100 ns (FWHM) duration, corresponding to a peak power of approximately 42 kW at a repetition rate of 1 kHz for an incident pump power of 16.8 W. The prospects for further improvement in continuous-wave and Q-switched performance are discussed.  相似文献   

8.
Dekker P  Pask HM  Piper JA 《Optics letters》2007,32(9):1114-1116
Continuous-wave operation at 588 nm of a diode-pumped Nd:GdVO4 laser with intracavity Raman shifting [in KGd(WO4)2, KGW] and frequency-doubling (in LiB3O5, LBO) is reported. A maximum cw power at 588 nm of 704 mW was obtained for diode pump powers of 13.7 W. Quasi-cw yellow powers up to 1.57 W at a 50% duty cycle (to reduce thermal load in the laser crystal) indicate that power scaling to over 1 W is feasible.  相似文献   

9.
Ultrasonic frequency effects on the removal of Microcystis aeruginosa   总被引:4,自引:0,他引:4  
Algae bloom in source water causes high chemical consumption and deteriorates water quality in waterworks. This paper studied the ultrasonic removal of Microcystis aeruginosa. The results showed that algae cells could be effectively removed by sonication and gas vesicle collapse was the main mechanism. The ultrasonic algae removal followed the first order reaction with a rate constant of 0.023 min(-1) (80 W, 80 kHz). Higher ultrasound frequency benefited algae removal; the algae removal rate constant was 0.114 min(-1) at 1320 kHz and 0.0224 min(-1) at 20 kHz (80 W). Higher ultrasound power also accelerated algae removal; the algae removal rate constant was 0.023 min(-1) at 80 W and 0.007 min(-1) at 32 W (80 kHz). However, high ultrasound power and long irradiation caused microcystins to increase. 80 W, 80 kHz sonication for 5 min increased the extracellular microcystins concentration from 0.87 microg/L to 3.11 microg/L. Sound frequency had little impact on the microcystins release. The chlorophyll a concentration initially decreased and then stabilized after 5 min of sonication.  相似文献   

10.
We report on a mid-infrared (mid-IR) source consisting of an approximately 10 W average-power, linearly polarized 1.54 microm wavelength pulsed fiber source pumping an optical parametric oscillator. From this source, we obtained average power in excess of 1 W in the 3.8-4.0 microm wavelength range at a pulse repetition frequency of 100 kHz. With a slightly different setup, we also achieved an average power of 0.25 W at 4.5 microm wavelength. To our knowledge, these values represent the highest mid-IR power obtained through wavelength conversion of an eye-safe fiber source.  相似文献   

11.
By using a semiconductor laser amplifier (SLA) with a three-wavelength configuration, which works as a nonlinear element in an optical loop mirror, a demultiplexer device for ultra-fast processing is presented. The simulation shows that its switching time can be less than 10 ps at the holding beam power of 1 W, therefore it has the ability of demultiplexing one bit data from 100 Gb/s Optical Time Division Multiplexing (OTDM) pulse trains at the control power of 1 W.  相似文献   

12.
Diode-pumped Nd:YxGd1-xVO4 crystal continuous-wave laser   总被引:3,自引:0,他引:3  
The diode-pumped Nd:YxGd1-xVO4 crystal continuous wave (CW) laser operating at 1.06 μm with a simple plane-concave cavity and a "V-shaped" folded cavity for intracavity frequency-doubling have been studied. With the incident pump power of 8 W, an output power (1.06 μm) of 3.4 W was achieved,giving an optical conversion efficiency of 42.5%. 884 mW of stable green radiation was generated with the incident pump power of 5.9 W, giving an optical conversion efficiency of 15%.  相似文献   

13.
高效腔外频率变换紫外激光器   总被引:2,自引:0,他引:2       下载免费PDF全文
 为了得到高效的腔外频率变换355 nm紫外激光输出,提出了一种利用3块LBO作为非线性频率变换晶体的新方案。采用LD端面泵浦Nd:YAG声光Q开关激光器作为基波源,当入射泵浦功率为25 W、调制频率12 kHz时,获得了6.2 W的1 064 nm激光输出,经过非线性频率变换后,获得了2.7 W的紫外355 nm激光输出,光-光转换率43.4%。  相似文献   

14.
崔建丰  高涛  张亚男  王迪  岱钦  姚俊 《发光学报》2016,(11):1367-1371
研制了输出功率达瓦级的351 nm准连续紫外激光器。激光器采用激光二极管(LD)端面抽运Nd∶YLF晶体和声光调Q技术,实现了1 053 nm准连续基波振荡。在结构简单的V型腔中,两块Li B3O5(LBO)晶体对基频光进行二倍频和三倍频,获得了高功率351 nm准连续紫外激光输出。在LD抽运功率为14 W、声光调Q激光器的调制频率为1 k Hz的工作条件下,得到351 nm紫外激光平均输出功率为1.12 W、脉冲宽度为34 ns、单脉冲能量为1.12 m J、峰值功率达32.94 k W。LD抽运光到351 nm紫外激光的光-光转换效率达到8%,电光效率为3.4%,光束质量良好。  相似文献   

15.
 以国产掺Yb光纤为增益介质,利用国产泵浦源和光纤器件,构建了主振荡功率放大结构的全国产大功率全光纤激光器。在注入的最大泵浦功率为75 W时,获得了52.5 W,1 080 nm激光的稳定输出,光-光效率为70%。实验结果表明,提高泵浦功率可获得更高的输出功率。  相似文献   

16.
We demonstrate a high power continuous-wave (CW) and acoustic-optically (AO) Q-switched 1314-nm laser with a diode-side-pumped Nd:YLF module. A maximum CW output power of 21.6 W is obtained with a diode pump power of 180 W, corresponding to an optical-to-optical conversion efficiency of 12.0% and a slope efficiency of 16.1%. In the Q-switching operation, a highest pulse energy of 3.8 mJ is obtained at a pulse repetition rate of 1 kHz. The shortest pulse width and maximum single peak power are 101.9 ns and 37.3 kW, respectively.  相似文献   

17.
A laser-diode (LD) pumped Q-switched Nd:Y0.5Lu0.5VO4 crystal laser with an acousto-optic (AO) modulator is presented in this paper. The maximum continuous wave (CW) output power of 5.53 W is achieved at the incident pump power of 14.09 W with the transmission of 10% for the output coupler, resulting in an optical-to-optical conversion efficiency of 39.2%. For Q-switching operation, the shortest pulse width of 8.3 ns and the highest peak power of 259 kW are generated under the incident pump power of 14.09 W at 1 kHz.  相似文献   

18.
We demonstrate a kilowatt level Quasi-continuous-wave (QCW) diode-side-pumped Nd:YAG ceramic laser at 1064 nm. The laser system adopts a master oscillator power amplifier scheme (MOPA). The master oscillator contains two diode-pumped laser modules. Under the pump power of 2000 W, an output power of 686 W was obtained. After amplified by an identical ceramic laser module, a maximum output power of 1020 W was obtained under a total incident pump power of 3433 W, corresponding to an optical-optical conversion efficiency of 29.7%. At the maximal output power, the repetition frequency was measured to be 1 kHz and the pulse width was 114 μs. To the best of our knowledge, this is the first time to realize QCW side-pumped Nd:YAG ceramic laser system with output power above 1 kW.  相似文献   

19.
Efficient, high-power, and widely tunable Tm-doped fiber lasers cladding-pumped by diode lasers at 791 nm are demonstrated by use of an external cavity containing a diffraction grating. A maximum output power of 62 W is obtained at 2 004 nm for 140 W of launched pump power, corresponding to a slope efficiency of 48% with respect to launched pump power. The operating wavelength is tunable over 200 nm (1 895 to 2 109 nm), with >52 W of output power over a tuning range of 140 nm (1 926 to 2 070 nm). Prospects for further improvement in output power, lasing efficiency, and tuning range are considered.  相似文献   

20.
XPS and AFM have been used to investigate surface modifications produced by acrylic acid (AA) vapor plasma treatment of silicon (Si)(1 0 0) substrates and polyurethanes (PUs) membranes. XPS analyses of Si and PUs treated substrates at low plasma power (5-20 W) revealed the formation of a thin film on the surfaces, which chemically resembles the poly(acrylic acid) film conventionally synthesised. No signal of the Si substrate could be seen under these low plasma power applications on silicon. However, when the plasma power is higher than 30 W one can clearly see XPS silicon signatures. AFM measurements of silicon substrates treated with AA plasma at low power (5-20 W) showed the formation of a thin polymer film of about 220-55 nm thickness. Further, applications of high plasma power (30-100 W) displayed a marked difference from low plasma modifications and it was found sputtering of the silicon substrate. Pervaporation results of AA plasma treated PUs membranes revealed that the selectivity for the separation of methanol from methyl-t-butyl ether is higher at 100 W and 1 min treatment time, than the other conditions studied. This last finding is discussed concerning the surface modifications produced on plasma treated silicon substrates and PU membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号