首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
二甲醚HCCI燃烧高温反应动力学分析   总被引:1,自引:0,他引:1  
应用单区燃烧模型对二甲醚均质压燃燃烧的化学反应动力学过程进行了数值模拟研究。通过分析在内燃机压燃燃烧边界条件下二甲醚高温氧化反应过程中的关键基元反应速度、关键中间产物以及自由基的浓度随曲轴转角的变化,得到了二甲醚燃烧氧化的高温反应途经。结果表明,二甲醚均质压燃燃烧具有明显的两阶段放热特性,即低温反应放热和高温反应放热。高温反应阶段又可分为蓝焰反应阶段和热焰反应阶段,其中蓝焰反应阶段是甲醛氧化成CO的过程,热焰反应主要是CO氧化成CO2的过程。二甲醚氧化产物之一甲酸(HOCHO)在蓝焰反应阶段分解生成CO2。  相似文献   

2.
CH自由基是烃类燃烧过程中反应活性很高的重要的中间产物[1,2].CH自由基与氮氧化物的反应被认为是通过二次燃烧过程减少氮氧化物的主要反应之一,也是对火焰中氮化物的化学行为建立模型的关键步骤[3].但是,对于CH与NO2反应的研究还不是很深入,到目前为止,只有两篇论文报道了该反应在298K时的总包反应速率常数[4,5].Taeg和Hershberger用红外二极管激光吸收法研究了该反应[6].他们在实验中只观测到了产物CO和NO,但一些较低能量的产物,如NH+CO2、OH+NCO等却没有被观察到.为了更深一步了解CH与NO2的反应产物及反应通道,我们用时间分…  相似文献   

3.
应用量子理论从头算和密度泛函理论(DFT)对双自由基CH(X2Π)与O2(X3∑g-)的反应机理进行了研究.在B3PW91/6-311G**水平上优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型,并计算了零点能和过渡态的虚频率.并由B3PW91/6-311G**给出了各物种的总能量.计算表明,反应物中自由基CH与O2反应主要在二重态势能面上进行,CH中的C原子可以插在O2分子中两个氧原子中间形成中间体1(2HCO2),中间体1(2HCO2)可以经过不同的反应通道形成不同的产物P1(1CO2 2H)和P2(1CO 2OH),各反应通道的反应热的计算与实验值吻合较好.  相似文献   

4.
采用加热激波管和增强型CCD瞬态光谱测量系统,在波长范围200~900nm,点火压力4.0atm,点火温度(1 200~1 300)K,当量比0.5、1.0和2.0的条件下,实时测得了正十二烷/空气和正十二烷/氧气/氩气燃烧过程的瞬态发射光谱.结果表明:燃烧过程在此波段内的主要发射光谱带归属于反应中间产物OH、CH和C2自由基;在不同当量比条件下,燃烧过程中OH(306.4nm)/CH(431.4nm)/C2(516.4nm)的光谱强度显著不同,贫油情形有利于OH自由基生成,富油情形有利于C2自由基生成;浴气的不同会导致燃料燃烧温度的不同,从而引起燃料燃烧发射光谱的不同.所测燃烧反应自由基的时间分辩光谱直观反映出正十二烷燃烧过程中重要中间产物OH、CH和C2的变化情况.研究结果有助于认识正十二烷燃烧反应特性和验证其燃烧反应机理.  相似文献   

5.
利用时间分辨傅立叶变换红外发射光谱技术研究了CH2Cl+O2的气相基元反应.在实验中首次观测到了振动激发产物CO (v·4)和CO2(o3,v·7).激发态的CO/CO2 (o3)比率是72.2§7.在QCISD//UB3LYP/6-311++G (d, p)水平上对该化学反应的中间物和产物进行了量子化学计算.其研究结果表明: CH2Cl 自由基首先和O2结合, 生成中间物CH2ClOO, 紧接着发生脱氯反应生成环氧中间物CH2OO,然后再经过一系列的异构化和分解反应,生成最终的产物CO和CO2,和实验观  相似文献   

6.
CH2Cl与OH自由基反应机理的理论研究   总被引:4,自引:0,他引:4  
用量子化学从头算方法对CH2 Cl与OH自由基反应生成HCCl+H2 O、HCOCl+H2 和H2 CO +HCl的机理进行了研究 .在UMP2 (FC) / 6 311++G 水平上计算出了各物种的优化构型、振动频率 ;并在Gaussian 3(G3)水平上计算了他们的零点能 (ZPE)、相对能量及总能量 .结果表明 ,CH2 Cl和OH自由基反应首先经无垒过程生成一个富能中间体CH2 ClOH ,中间体再经过一系列原子转移、基团旋转和键断裂分别生成产物HCCl+H2 O、HCOCl+H2 和H2 CO +HCl;三者均为放热反应 ,放热量分别为 72 .81、338.5 4和 35 4 .0 8kJ/mol;生成H2 CO +HCl放出的热量比生成HCCl+H2 O放出的热量多 2 81.2 7kJ/mol,与实验结果吻合 .  相似文献   

7.
正庚烷燃烧反应中间自由基的光谱测量   总被引:1,自引:0,他引:1  
采用ICCD瞬态光谱探测系统和化学激波管,在点火温度1 408K,点火压力2.0atm,燃料摩尔分数1.0%,当量比1.0的条件下,拍摄了正庚烷燃烧过程中不同时刻的瞬态发射光谱,光谱曝光时间6μs,拍谱范围200~850nm。确认了在所拍光谱范围内主要是OH,CH和C2自由基的特征辐射光谱,表明小自由基OH,CH和C2是正庚烷燃烧过程中重要的反应中间产物。所拍时间分辨光谱显示,在正庚烷燃烧反应中,OH,CH和C2自由基一出现很快就达到其浓度峰值,但CH和C2自由基随着反应的进行迅速减少至消失,OH自由基持续的时间却长很多。实验结果为了解正庚烷燃烧反应微观过程和验证其燃烧反应机理提供了实验依据。  相似文献   

8.
利用同步辐射真空紫外单光子电离结合分子束质谱技术,对当量比φ=1.5的低压预混层流二甲醚火焰进行了实验研究。通过测量光电离质谱和光电离效率曲线,探测到了二甲醚/氧气/氩气的燃烧产物和火焰中间物,包括不稳定的分子和自由基。通过测量离子信号的空间分布曲线,计算了二甲醚/氧气/氩气火焰的主要物种C_2H_6O、O_2、Ar、H_2、H_2O、CO和CO_2的摩尔分数曲线,以及主要中间物种如CH_2O、C_2H_2、C_2H_4、CH_3OH、C_2H_2O、C_2H_4O、CH_3、CH_4、HCO、C_3H_3和C_3H_4的摩尔分数曲线,并分析了主要中间物种的产生和消耗过程。  相似文献   

9.
利用abinitio方法对CH3CH2+O(3P)反应进行了理论研究,在MP2/6311+G(d,p)水平上优化得到了反应途径上的反应物、中间体、过渡态和产物的几何构型和谐振频率,并在QCISD(T)/6311+G(d,p)水平上进行单点能计算.计算结果表明:CH2O+CH3、CH3CHO+H和CH2CH2+OH是主要反应产物,其中CH2O+CH3主要来自反应通道A1:(R)→IM1→TS3→(A),CH3CHO+H主要来自反应通道B1:(R)→IM1→TS4→(B),CH2CH2+OH主要来自直接抽提反应通道C1和C2:(R)→TS1(TS2)→(C).计算结果同时表明该反应生成CO的通道能垒是非常高的,CO应该不是主要产物.  相似文献   

10.
用时间分辨傅立叶红外光谱法和量子化学计算,研究了CH3自由基与NO2的基元反应.由248 nm激光光解CH3Br或CH3I得到CH3自由基.首次观测到了振动激发的产物OH、HNO和CO2.另一产物NO也被证实.由此确定了反应通道CH3O+NO,CH2NO+OH 和HNO+H2CO.其中CH3O+NO是主要的反应通道.还用CCSD(T)/6-311++G(df,p)//MP2/6-311G(d,p)的方法对上述通道的机理在理论上做了研究.理论计算的结果与实验观察相符.  相似文献   

11.
本文使用详细的化学反应机理模拟了C2H6/O2/N2/AR层流对冲扩散火焰中多环芳烃的生成动力学过程。反应机理包括96种组分的502个基元反应。通过数值计算分析了层流对冲火焰的结构和主要反应物、中间物质和反应产物的浓度变化,并与相关文献的实验结果进行了比较。结果表明,数值模拟在燃烧过程和PAH生成规律上与实验结果是一致的,但在某些组分的定量预报上存在一定的差别。  相似文献   

12.
采用自定义标量法模拟丙烷扩散燃烧,该方法通过把反应组分定义为Fluent程序的自定义标量、化学反应速率作为源项求解质量、动量、能量和组分守恒方程,并用化学反应引起的能量变化修正能量方程.考虑了详细的化学反应机理,整个燃烧反应机理包括27种化学物质(不含N2)和83个基元反应.合理地模拟出了丙烷的燃烧过程,并将火焰的长度、温度、丙烷、氧气以及中间产物的分布与实验数据进行比较.  相似文献   

13.
This paper presents a joint numerical and experimental study of the ignition process and flame structures in a gasoline partially premixed combustion (PPC) engine. The numerical simulation is based on a five-dimension Flamelet-Generated Manifold (5D-FGM) tabulation approach and large eddy simulation (LES). The spray and combustion process in an optical PPC engine fueled with a primary reference fuel (70% iso-octane, 30% n-heptane by volume) are investigated using the combustion model along with laser diagnostic experiments. Different combustion modes, as well as the dominant chemical species and elementary reactions involved in the PPC engines, are identified and visualized using Chemical Explosive Mode Analysis (CEMA). The results from the LES-FGM model agree well with the experiments regarding the onset of ignition, peak heat release rate and in-cylinder pressure. The LES-FGM model performs even better than a finite-rate chemistry model that integrates the full-set of chemical kinetic mechanism in the simulation, given that the FGM model is computationally more efficient. The results show that the ignition mode plays a dominant role in the entire combustion process. The diffusion flame mode is identified in a thin layer between the ultra fuel-lean unburned mixture and the hot burned gas region that contains combustion intermediates such as CO. The diffusion flame mode contributes to a maximum of 27% of the total heat release in the later stage of combustion, and it becomes vital for the oxidation of relatively fuel-lean mixtures.  相似文献   

14.
本文使用详细的化学反应机理模拟了C7H16/空气层流预混火焰中多环芳烃的生成动力学过程.反应机理包括108种组分的572个基元反应.通过数值计算分析了层流预混火焰的结构和主要反应物、中间物质和反应产物的浓度变化,并对A1-A4组分的反应灵敏度进行了分析。并初步得到可以用于CFD的简化机理.  相似文献   

15.
Combustion phenomena are of high scientific and technological interest, in particular for energy generation and transportation systems. Direct Numerical Simulations (DNS) have become an essential and well established research tool to investigate the structure of turbulent flames, since they do not rely on any approximate turbulence models. In this work two complementary DNS codes are employed to investigate different types of fuels and flame configurations. The code is π3 is a 3-dimensional DNS code using a low-Mach number approximation. Chemistry is described through a tabulation, using two coordinates to enter a database constructed for example with 29 species and 141 reactions for methane combustion. It is used here to investigate the growth of a turbulent premixed flame in a methane-air mixture (Case 1). The second code,Sider is an explicit three-dimensional DNS code solving the fully compressible reactive Navier-Stokes equations, where the chemical processes are computed using a complete reaction scheme, taking into account accurate diffusion properties. It is used here to compute a hydrogen/air turbulent diffusion flame (Case 2), considering 9 chemical species and 38 chemical reactions.  相似文献   

16.
本文报道了我们发展的一个包含176个物种和806个反应的乙基苯火焰模型,用于模拟4.0 kPa压力下的富燃乙基苯火焰(φ=1.90)。结果表明本模型可以很好地预测各种产物及中间体的摩尔分数曲线。通过生成速率分析得到了乙基苯在富燃条件下的反应路径。分析结果显示,乙基苯在富燃条件下的主要分解路径为C6H5C2H5→C6H5CH2→C7H6→C5H54→C3H3→C3H2,产生的C3H2再经过氧化反应序列生成主要产物CO。此外,乙基苯支链上一系列的脱氢/β-断键反应也对乙基苯的分解具有不可忽视的作用。本模型为发展长链芳香烃模型打下了基础,有助于对未来实用燃料和航空替代燃料中长链芳香烃燃烧持性进行预测。  相似文献   

17.
对氢、正烷烃碳氢燃料与氧的对向扩散火焰,其中正烷烃包含了在工业用燃料中广泛应用的CnH2n+2正烷烃CH4~C16H34,对这些燃料的火焰结构进行了分析和比较,系统地分析了压力和拉伸率对火焰行为和热释放率等的影响,其中包含了2115个组分8157个可逆反应.研究结果表明,所有燃料的火焰厚度和热释放率与压力和拉伸率的乘积的平方根成线性关系.在相同工况下,氢的火焰厚度总是大于所有的碳氢燃料,而CH4~C16H34所有的碳氢燃料在相同工况下总是具有几乎相同的燃烧温度分布、燃烧产物分布、火焰厚度和热释放率,该结果表明由这些碳氢燃料组成的混合燃料具有同样的火焰特性.  相似文献   

18.
This paper presents an experimental and numerical study of the combustion of isolated n‑butyl acetate droplets in the standard atmosphere. Numerical simulations are reported using a model that incorporates unsteady gas and liquid transport, variable properties, and radiation. Three skeletal mechanisms of n‑butyl acetate, derived from a large detailed mechanism comprised of 819 species and 52,698 reactions, were used in the numerical simulations to evaluate the influence of the kinetic mechanism on burning. The reduced mechanisms comprised 212 species and 5413 reactions, 157 species and 3089 reactions, and 105 species and 1035 reactions. The numerical model did not include soot formation, though qualitatively mild sooting was noted only for droplets larger than 0.7 mm. The numerical predictions were in good agreement with experimental measurements of droplet and flame diameters. Flame extinction was numerically predicted which was attributed to a decrease of the characteristic diffusion time relative to the chemical time as droplet burned. Effects of initial droplet diameter on the evolution of maximum gas temperature (Tmax) and peak mole fractions of CO2 and CO are also examined numerically.  相似文献   

19.
Resonance-stabilized cyclopentadienyl radicals are important intermediate species in the combustion of transportation fuels. It not only serves as precursors for polycyclic aromatic hydrocarbon (PAH) formation, but also involves in the formation of fundamental PAH precursors such as propargyl and acetylene. In this work, the unimolecular reactions of the cyclopentadienyl radicals are theoretically studied based on high-level quantum chemistry and RRKM/master equation calculations. Stationary points on the potential energy surface (PES) are calculated at the CCSD(T)/CBS//M06–2X/6–311++(d,p) level of theory. The branching ratios of unimolecular reactions of the cyclopentadienyl radicals are analyzed for a broad temperature range from 500 to 2500 K and pressures from 0.01 to 100 atm. It is found that the isomerization reaction of the cyclopentadienyl radical via 1,2-hydrogen transfer dominates at low temperatures and high pressures, while the well-skipping decomposition reaction which forms propargyl and acetylene is important at high temperatures and low pressures. Both the decomposition reaction of the cyclopentadienyl radicals and its reverse reaction show pronounced pressure dependence, and their reaction rate constants are compared against available low-pressure experimental measurements and theoretical studies. The temperature- and pressure-dependent rate coefficients for important reactions involved on the C5H5 PES are calculated and updated in a chemical kinetic model. Impacts of the unimolecular reactions of the cyclopentadienyl radicals on the PAH formation are explored by the numerical modeling of a low-pressure cyclopentene counterflow diffusion flame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号