首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium manganates with nominal composition Na2/3MnO2 were prepared by solid state reaction between Na2CO3 and MnCO3 at 1000 °C. The composition and structure of NaxMnO2 were controlled by the rate of cooling from the temperature of preparation. This is a consequence of the capability of Na2/3MnO2 to accommodate overstoichiometric Mn4+ ions up to 12.5%. Structural characterization was carried out by XRD powder diffractions, TEM analysis and Raman spectroscopy. The composition and oxidation state of manganese were determined by chemical analysis and magnetic susceptibility measurements. The manganese distribution in the layers was analysed using electron paramagnetic resonance (EPR) spectroscopy. By quenching from 1000 °C, the orthorhombic distorted modification is stabilized. A phase separation into orthorhombic and hexagonal modifications takes place when Na2/3MnO2 is slow cooled. The structure changes are concomitant with an increase in the oxidation state of Mn. The overstoichiometric Mn4+ ions are accommodated in the hexagonal modification by creation of vacancies in the MnO2layers.  相似文献   

2.
We report a low temperature synthesis of layered Na0.20Co02 and K0.44CoO2 phases from NaOH and KOH fluxes at 400°C. These layered oxides are employed to prepare hexagonal HCoO2, LixCoO2and Delafossite AgCoO2 phases by ion exchange method. The resulting oxides were characterised by powder X-ray diffraction, X-ray photoelectron spectroscopy, SEM and EDX analysis. Final compositions of all these oxides are obtained from chemical analysis of elements present. Na0.20Co02 oxide exhibits insulating to metal like behaviour, whereas AgCoO2 is semiconducting. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   

3.
Vanadium pentoxide (V2O5 ) exhibits high theoretical capacities when used as a cathode in lithium ion batteries (LIBs), but its application is limited by its structural instability as well as its low lithium and electronic conductivities. A porous composite of V2O5 -SnO2 /carbon nanotubes (CNTs) was prepared by a hydrothermal method and followed by thermal treatment. The small particles of V2O5 , their porous structure and the coexistence of SnO2 and CNTs can all facilitate the diffusion rates of the electrons and lithium ions. Electrochemical impedance spectra indicated higher ionic and electric conductivities, as compared to commercial V2O5 . The V2O5 -SnO2 /CNTs composite gave a reversible discharge capacity of 198 mAh g-1 at the voltage range of 2.05 4.0 V, measured at a current rate of 200 mA g-1 , while that of the commercial V2O5 was only 88 mAh g-1 , demonstrating that the porous V2O5 -SnO2 /CNTs composite is a promising candidate for high-performance lithium secondary batteries.  相似文献   

4.
An analysis of the electronic and magnetic properties of Ca2MnO4 and Ca2MnO3.5 is carried out within local spin density functional theory using the augmented spherical wave method. From energy differences between the hypothetic magnetic configurations both systems are found to be insulating antiferromagnets in the ground state with a 1 eV gap. However we identify an intermediate half metallic ferromagnetic state with the Hund’s rule expected moments for MnIV (3 μB) and MnIII (4 μB, high spin HS configuration), respectively. The latter result of moment magnitude finds support in recent experimental evidence of MnIII bismuth oxide as a ferromagnet in its ground state. This is characterized by a small density of states (DOS) magnitude of itinerant states in spin (↑) channel pointing to a metallic-like behavior as it is experimentally evidenced. For both Ca2MnO4 and Ca2MnO3.5 the chemical bonding characteristics are resolved for the two spin channels. Relationship to colossal magnetoresistive compounds is proposed.  相似文献   

5.
构建表面无机-有机复合包覆层,用于改善高镍层状(NCM811)正极材料结构和界面不稳定问题。复合包覆层由纳米偏铝酸锂(LiAlO2,LAO)和环化聚丙烯腈(cPAN)构成。该复合包覆层中LAO是一种典型的锂离子导体,可提供Li+迁移通道;PAN环化后,可产生离域的π键,形成具有电子导电性的cPAN。材料表面复合包覆层的结构及成分研究表明,该复合包覆层均匀分布在 NCM811 材料表面。半电池测试结果表明,在 2.7~4.3 V(vs Li/Li+)电压范围内,在 180 mA·g-1电流密度下,改性后的NCM811材料循环150周后容量保持率为84.8%。而同样条件下,原始NCM811材料容量保持率为65.5%。该复合包覆层可有效提升NCM811结构和界面稳定性,减少电解液分解,降低界面阻抗。  相似文献   

6.
LiMn2O4 nanorods were prepared by a facile hydrothermal method in combination with traditional solid-state reactions and characterized by X-ray diffraction analysis. Their electrochemical behavior was tested by cyclic voltammetry and repeated charge/discharge cycling. Results show that the reversible intercalation/deintercalation of Li-ions into/from LiMn2O4 cathode can yield up to 110 mAh/g at 4.5 C, and still retains 88% at the very large charge rate of 90 C with well-defined charge and discharge plateaus. It presents very high power density, up to 14.5 kW/kg, and very excellent cycling behavior, 94% capacity retention after 1200 cycles. It is thus a competitor for LiFePO4.  相似文献   

7.
构建表面无机-有机复合包覆层,用于改善高镍层状(NCM811)正极材料结构和界面不稳定问题。复合包覆层由纳米偏铝酸锂(LiAlO2,LAO)和环化聚丙烯腈(cPAN)构成。该复合包覆层中LAO是一种典型的锂离子导体,可提供Li+迁移通道;PAN环化后,可产生离域的π键,形成具有电子导电性的cPAN。材料表面复合包覆层的结构及成分研究表明,该复合包覆层均匀分布在 NCM811 材料表面。半电池测试结果表明,在 2.7~4.3 V(vs Li/Li+)电压范围内,在 180 mA·g-1电流密度下,改性后的NCM811材料循环150周后容量保持率为84.8%。而同样条件下,原始NCM811材料容量保持率为65.5%。该复合包覆层可有效提升NCM811结构和界面稳定性,减少电解液分解,降低界面阻抗。  相似文献   

8.
Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-dimensional layered ternary indium phosphorus sulfide(In2P3S9) nanosheets are prepared.The layered structure and ternary composition of the In2P3S9 electrode result in impressive electrochemical performance,including a ...  相似文献   

9.

In this work, the electrochemical performance of Na-doped layered cathode material LiCoO2 for Li-ion batteries is studied using first-principles calculations. The results show that the doped Na ion acts as a pillar, which can greatly increase the diffusion rate of Li ions, but it is not conducive to improving cycle performance and delithiation potential. These research results provide a theoretical reference for the study of Li-ion batteries with high-rate performance. Due to the conflicting role of single element doping, the multi-element co-doping strategy will be the best way to develop high-performance Li-ion batteries.

Graphical abstract
  相似文献   

10.
Due to the advantages of aluminum in abundance in the earth’s crust and safety,how to exploit these advantages to develop high-performance rechargeable aluminum batteries to replace traditional batteries has become an urgent issue.The key to solving this problem is to find suitable materials as cathode for aluminum batteries.Here,we propose a strategy in which Ti3 C2(MXene) is used as a loaded structure for the organic anthraquinone derivative Benzo[1,2-b:4,5-b’]dithiophene...  相似文献   

11.
Crystals of Ti2PTe2 have been synthesised by chemical vapour transport. Ti2PTe2 crystallises, isostructural to the mineral tetradymite (Bi2STe2), in the space group Rm with unit-cell parameters a=3.6387(2) Å and c=28.486(2) Å for the hexagonal setting. In the structure, layers of isolated phosphide and telluride anions form an ordered close sphere-packing with titanium cations filling two-thirds of the octahedral voids. From XANES fluorescence, the presence of Ti4+ is clearly established. In accordance with the ionic formula (Ti4+)2(P3−)(Te2−)2(e) metallic conductivity (ρ=40 μΩ cm at 300 K) and nearly temperature-independent paramagnetism are found. The electronic band structure shows bands of titanium states crossing the Fermi level in directions corresponding to the ab-plane and a band gap along the c-axis.  相似文献   

12.
A series of Nd3+-doped Li3NdxV2àx(PO4)3(x = 0.00, 0.02, 0.05, 0.08 or 0.1) composites are synthesized by the rheological phase reaction method. The XRD results indicate that Nd3+ions have been successfully merged into a lattice structure. Doped samples show good electrochemical performance in high discharge rate and long cycle. In the potential range of 3.0–4.3 V, Li3Nd0.08V1.92(PO4)3exhibits an initial discharge capacity of 115.8 m Ah/g at 0.2 C and retain 80.86% of capacity retention at 2 C in the 51 st cycle.In addition, Li3Nd0.05V1.95(PO4)3holds at 100.4 m Ah/g after 80 cycles at 0.2 C with a capacity retention of92.4%. Finally, the CV test proves that the potential polarization of Li3Nd0.08V1.92(PO4)3decreased compared with the un-doped one.  相似文献   

13.
La0.6Sr1.4MnO4 (LSMO4) layered perovskite with K2NiF4 structure was prepared and evaluated as anode material for La0.8Sr0.2Ga0.83Mg0.17O3 − δ (LSGM) electrolyte supported intermediate temperature solid oxide fuel cells (IT-SOFCs). X-ray diffraction results show that LSMO4 is redox stability. Thermal expansion coefficient of LSMO4 is close to that of LSGM electrolyte. By adopting LSMO4 as anode and La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) as cathode, maxium power densities of 146.6, 110.9 mW cm− 2 with H2 fuel at 850, 800 °C and 47.3 mW cm− 2 with CH4 fuel at 800 °C were obtained, respectively. Further, the cell demonstrated a reasonably stable performance under 180 mA cm− 2 for over 40 h with H2 fuel at 800 °C.  相似文献   

14.
We found that when the precursors CaMnO3 and Ca2MnO4 are reduced with any one of a variety of inorganic (H2, NH3) or organic (C2H4, C3H6) reducing agents between 300 and 500°C, topotactic reaction occurs to produce the ordered oxygen-defect phases CaMnO2.5 and Ca2MnO3.5, respectively. Orthorhombic cell constants for CaMnO2.5 are a = 5.43(1), b = 10.24(1), and c = 3.74(1) Å, and for Ca2MnO3.5 are a = 5.30(1), b = 10.05(1), and c = 12.24(1)Å. These compounds were characterized by powder X-ray diffraction, thermogravimetric analysis, magnetic susceptibility, and infrared spectroscopy. The reduced compounds reversibly oxidize to their respective precursor in oxygen at low temperatures.  相似文献   

15.
Li[Li0.23Co0.3Mn0.47]O2 cathode material was prepared by a sol–gel method. The material had a primary particle size of about 100 nm, covered by a 30 Å of Li2CO3 layer. The material showed promising electrochemical performance when cycled up to 3C rate. The electrochemical kinetics of the first charge was much slower than that of the second charge, due to the complex electrochemical process which involved not only Li+ diffusion but also release of oxygen. By taking account of this, the material was pre-charged very slowly (C/50) in the first cycle. This led to excellent electrochemical performance in the following cycles. For instance, the 1C-rate capacity increased to 168 mA h g−1 after 50 cycles, comparing with the 145 mA h g−1 obtained without pre-charging.  相似文献   

16.
Spherical Ni0.8Co0.15Al0.05OOH precursor,prepared by a co-oxidation-controlled crystallization method,was used to synthesize LiNi0.8Co0.15Al0.05O2.The obtained LiNi0.8Co0.15Al0.05O2 materials showed excellent electrochemical performance,with an initial discharge capacity of 193.5 mAh/g and capacity retention of 95.1%after 50 cycles when cycled at 0.2℃rate between 2.8 and 4.3 V.  相似文献   

17.
Li(Mn1/3Ni1/3Co1/3)O2 cathode materials were fabricated by a hydroxide precursor method.Al2O3 was coated on the surface of the Li(Mn1/3Ni1/3CO1/3)O2 through a simple and effective one-step electrostatic self-assembly method.In the coating process,a NaHCO3-H2CO3 buffer was formed spontaneously when CO2 was introduced into the NaAlO2 solution.Compared with bare Li(Mn1/3Ni1/3Co1/3)O2, the surface-modified samples exhibited better cycling performance,rate capability and rate capability retention.The Al2O3-coated Li(Mn1/3Ni1/3Co1/3)O2 electrodes delivered a discharge capacity of about 115 mAh·g-1 at 2A·g-1,but only 84 mAh·g-1 for the bare one.The capacity retention of the Al2O3-coated Li(Mn1/3Ni1/3Co1/3)O2 was 90.7%after 50 cycles,about 30%higher than that of the pristine one.  相似文献   

18.
We report the synthesis of the perovskite manganites Pr0.5Sr0.5MnO3 and Nd0.5Sr0.5MnO3 using mild hydrothermal conditions. Both are formed as polycrystalline powders from solutions of metal salts in aqueous potassium hydroxide at 240 °C, and crystallise as a tetragonal polymorph (space group I4/mcm). Scanning electron microscopy shows both materials to contain cuboid-shaped crystallites several microns in dimension, and the average particle size is verified by light scattering measurements. We also report the first hydrothermal synthesis of 2H-BaMnO3 and 4H-SrMnO3, and the first subcritical hydrothermal synthesis of CaMn2O4 (marokite). Despite the formation of these alkali-earth manganese oxides at 240 °C, we have been unable to isolate rare-earth manganese oxides LnMnO3 using similar conditions. We discuss the formation of perovskite manganites in hydrothermal reactions by relating our new results to those manganites already reported to form under hydrothermal conditions, and rationalise the trends seen by considering tolerance factor of the perovskite and the variance of the A-site metal radius.  相似文献   

19.
首先采用共沉淀方法制备富锂锰基正极材料 Li1.2Mn0.54Ni0.13Co0.13O2原始样品(P-LRMO), 然后通过简单的湿化学法以及低温煅烧方法对其进行不同含量 Ga2O3原位包覆。透射电子显微镜(TEM)以及 X射线光电子能谱(XPS)结果表明在 P-LRMO表面成功合成了 Ga2O3包覆层。电化学测试结果表明:含有 3 %Ga2O3的改性材料 G3-LRMO具有最优的电化学性能, 其在 0.1C倍率(电流密度为 25 mA·g-1)下首圈充放电比容量可以达到 270.1 mAh·g-1, 在 5C倍率下容量仍能保持 127.4 mAh·g-1, 优于未改性材料的 90.7 mAh·g-1, 表现出优异的倍率性能。G3-LRMO在 1C倍率下循环 200圈后仍有 190.7 mAh·g-1的容量, 容量保持率由未改性前的 72.9 %提升至 85.6 %, 证明 Ga2O3包覆改性能有效提升富锂锰基材料的循环稳定性。并且, G3-LRMO在 1C倍率下循环 100圈后, 电荷转移阻抗(Rct)为 107.7 Ω, 远低于未改性材料的 251.5 Ω, 表明 Ga2O3包覆层能提高材料的电子传输速率。  相似文献   

20.
Various NaxMnO2 bronzes have been electrochemically deintercalated. Na0.40MnO2 has a channel structure which is maintained for a large intercalation range (0.30 ≤ × ≤ 0.58). In order to explain the upper intercalation limit, an ordered sodium distribution between two types of Na+ sites is proposed. Na0.70MnO2 and α-NaMnO2 have lamellar structures of P2 and 0′3 types. During intercalation the original P2 type is maintained for 0.45 ≤ × ≤ 0.85 while two reversible structural transitions are observed from α-NaMnO2. A similar behavior occurs during the deintercalation of the high-temperature β-NaMnO2 variety. In each case of the structural transition the double octahedral layers remain unchanged. Electronic localization (increased by Mn3+ Jahn—Teller effect) tends to trap the Na+ ions and therefore increases the relaxation time of the investigated materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号