首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc-ion batteries (ZIBs), which use mild aqueous electrolyte, have attracted increasing attention, due to their unique advantages such as low cost, high safety, environmental friendliness, and ease of manufacture. At present, developing a kind of cathode materials with stable structures and large capacities for ZIBs is a hot research topic. Among all ZIBs cathode materials, manganese-based cathode materials have the advantages of low cost, abundant reserves, low toxicity, rich valence states, and high zinc storage capacity, which make them one of the most promising candidates. In recent years, manganese-based composites with different crystal structures have been extensively studied as cathode materials of ZIBs. In this paper, the reaction mechanism of ZIBs cathodes is discussed in detail, and the challenges faced by manganese-based cathode materials and the latest research progress are examined deeply. In addition, a number of optimization strategies aimed at improving the electrochemical performance of the cathode of ZIBs are outlined. Finally, the future prospect of ZIBs is presented.  相似文献   

2.
Zn-ion batteries (ZIBs) have gained great attention as promising next-generation power sources, because of their low cost, enviable safety and high theoretical capacity. Recently, massive researches have been devoted to vanadium-based materials as cathodes in ZIBs, owing to their multiple valence states, competitive gravimetric energy density, but the capacity degradation, sluggish kinetics, low operating voltage hinder further optimization of their performance in ZIBs. This review summarizes recent progress to increase the interlayer spacing, structural stability, and the diffusion ability of the guest Zn ions, including the insertion of different ions, introduction of defects, design of diverse morphologies, the combination of other materials. We also focus on approaches to promoting the valuable performance of vanadium-based cathodes, along with the related ongoing scientific challenges and limitations. Finally, the future perspectives and research directions of vanadium-based aqueous ZIBs are provided.  相似文献   

3.
In recent years, especially when there is increasing concern about the safety issue of lithium-ion batteries(LIBs), aqueous Zn-ion batteries(ZIBs) have been getting a lot of attention because of their costeffectiveness, materials abundance, high safety, and ecological friendliness. Their working voltage and specific capacity are mainly determined by their cathode materials. Vanadium oxides are promising cathode materials for aqueous ZIBs owing to their low cost, abundant resources, and multivale...  相似文献   

4.
Vanadium-based compounds with high theoretical capacities and relatively stable crystal structures are potential cathodes for aqueous zinc-ion batteries(AZIBs). Nevertheless, their low electronic conductivity and sluggish zinc-ion diffusion kinetics in the crystal lattice are greatly obstructing their practical application. Herein, a general and simple nitrogen doping strategy is proposed to construct nitrogen-doped VO2(B) nanobelts(denoted as VO2-N) by the ammonia heat tre...  相似文献   

5.
Aqueous zinc-ion batteries(AZIBs) have aroused significant research interest around the world in the past decade. The use of low-cost aqueous electrolytes and a metallic Zn anode with a suitable redox potential and high energy density make AZIBs a potential alternative to commercial Li-ion batteries in the development of next-generation batteries. However, owing to the narrow electrochemical stability window(ESW) of aqueous electrolytes, the choice of cathode materials is limited, because of whi...  相似文献   

6.
《中国化学快报》2022,33(8):3955-3960
Rechargeable aqueous zinc-ion batteries are recently gaining incremental attention because of low cost and material abundance, but their development is plagued by limited choices of cathode materials with satisfactory cycling performance. The polyoxometalates perform formidable redox stability and able to participate in multi-electron transfer, which was well-suited for energy storage. Herein, a bi-component polyoxometalate-derivative KNiVO (K2[Ni(H2O)6]2[V10O28]·4H2O polyoxometalates after annealing) is firstly demonstrated as a cathode material for aqueous ZIBs. The layered KV3O8 (KVO) In the bi-component material constitutes Zn2+ migration and storage channels (K+ were substantially replaced by Zn2+ in the activation phase), and the three-dimensional NiV3O8 (NiVO) part acts as skeleton to stabilize the ion channels, which assist the cell to demonstrate a high-rate capacity and specific energy of 229.4 mAh/g and satisfactory cyclability (capacity retention of 99.1% after 4500 cycles at a current density of 4 A/g). These results prove the feasibility of POM as cathode materials precursor and put forward a novel pattern of the Zn2+ storage mechanism in the activated-KNiVO clusters, which also provide a new route for selecting or designing high-performance cathode for aqueous ZIBs and other advanced battery systems.  相似文献   

7.
The 'composite' layered materials for lithium-ion batteries have recently attracted great attention owing to their large discharge capacities. Here, the 0.5Li(2)MnO(3)·0.5LiMn(0.42)Ni(0.42)Co(0.16)O(2)'composite' layered manganese-rich material is prepared and characterized by the synchrotron X-ray powder diffraction (SXPD). The relationship between its electrochemical performance and its 'composite' components, the Li(2)MnO(3) phase activation process during cycling and the cycle stability of this material at room temperature are elucidated based on its kinetic controlled electrochemical properties, dQ/dV curves and Raman scattering spectroscopies associated with different initial charge-discharge current densities (5 mA g(-1), 20 mA g(-1) and 50 mA g(-1)), cut-off voltages (4.6 V and 4.8 V) and cycle numbers (50 cycles and 150 cycles). Furthermore, its reaction pathways are tracked via a firstly introduced integrated compositional phase diagram of four components, Li(2)MnO(3), LiMn(0.42)Ni(0.42)Co(0.16)O(2), MO(2) (M = Mn(1-α-β)Ni(α)Co(β); 0 ≤α≤ 5/12, 0 ≤β≤ 1/6) and LiMnO(2), which turns out to be a very important guiding tool for understanding and utilizing this 'composite' material.  相似文献   

8.
Rechargeable aqueous zinc-ion batteries (ZIBs) are attracting growing attention in the field of grid-scale energy storage systems due to their reliable safety and low cost. However, it is still hindered by the limited choices of suitable cathode materials with high performance for aqueous ZIBs. Herein, we developed a V-MOF@graphene derived two-dimensional hierarchical V2O5@graphene for the first time, where the porous V2O5 nanosheets are homogeneously attached to the 2D graphene substrate. Benefiting from the unique 2D composite structure with excellent electronic and ionic conductivity, adequate active sites, as well as the synergistic effect between the ultrathin V2O5 nanosheets and graphene, the V2O5@graphene here exhibits outstanding electrochemical performance in aqueous ZIBs. Particularly, it delivered an ultrahigh reversible capacity of 378 mAh/g at a current density of 2 A/g. What is more, a high specific capacity of 305 mAh/g after 100 cycles at 0.1 A/g and 200 mAh/g after 1,000 cycles at 1 A/g can be achieved. These ideal results suggest that the V2O5@graphene cathode hold great promise for high-performance aqueous zinc-ion batteries.  相似文献   

9.
Ying Liu  Xiang Wu 《中国化学快报》2022,33(3):1236-1244
Commercial lithium-ion batteries(LIBs) have been widely used in various energy storage systems. However, many unfavorable factors of LIBs have prompted researchers to turn their attention to the development of emerging secondary batteries. Aqueous zinc ion batteries(AZIBs) present some prominent advantages with environmental friendliness, low cost and convenient operation feature. Mn O2electrode is the first to be discovered as promising cathode material. So far, manganese-based oxides have made...  相似文献   

10.
Zinc-ion batteries (ZIBs) have received much research attention due to their advantages of safety, non-toxicity, simple manufacture, and element abundance. Nevertheless, serious problems still remain for their anodes, such as dendrite development, corrosion, passivation, and the parasitic hydrogen evolution reaction due to their unique aqueous electrolyte system constituting the main issues that must be addressed, which are blocking the further advancement of anodes for Zn-ion batteries. Herein, we conduct an in-depth analysis of the problems that exist for the zinc anode, summarize the main failure types and mechanisms of the zinc anode, and review the main modification strategies for the anode from the three aspects of the electrolyte, anode surface, and anode host. Furthermore, we also shed light on further modification and optimization strategies for the zinc anode, which provide directions for the future development of anodes for zinc-ion batteries.

This review provides a comprehensive summary of the research progress of Zn anodes, including the main challenges of Zn metal anodes, the corresponding optimization strategies, and the perspectives for practical aqueous Zn-ion batteries.  相似文献   

11.
Du  Min  Zhang  Feng  Zhang  Xiaofei  Dong  Wentao  Sang  Yuanhua  Wang  Jianjun  Liu  Hong  Wang  Shuhua 《中国科学:化学(英文版)》2020,63(12):1767-1776
Science China Chemistry - Rechargeable aqueous zinc ion batteries (ZIBs), with the easy operation, cost effectiveness, and high safety, are emerging candidates for high-energy wearable/portable...  相似文献   

12.
Aqueous rechargeable zinc-ion batteries (ZIBs) provide high theoretical capacity, operational safety, low-cost and environmental friendliness for large-scale energy storage and wearable electronic devices, but their future development is plagued by low capacity and poor cycle life due to the lack of suitable cathode materials. In this work, a covalent organic framework (Tp-PTO-COF) with multiple carbonyl active sites is synthesized and successfully introduced in aqueous rechargeable ZIBs for the first time. Tp-PTO-COF delivers high specific capacities of 301.4 and 192.8 mA h g−1 at current densities of 0.2 and 5 A g−1, respectively, along with long-term durability and flat charge–discharge plateaus. The remarkable electrochemical performance is attributed to the abundance of nucleophilic carbonyl active sites, well defined porous structure and inherent chemical stability of Tp-PTO-COF. Moreover, the structural evolution and Zn2+ ion intercalation mechanism are discussed and revealed by the experimental analysis and density functional theory calculations. These results highlight a new avenue to develop organic cathode materials for high performance and sustainable aqueous rechargeable ZIBs.

A covalent organic framework (Tp-PTO-COF) with carbonyl active sites was proposed as a novel cathode material and successfully applied in aqueous rechargeable zinc-ion batteries (ZIBs).  相似文献   

13.
Li  Bingyan  Liu  Wenhua  Zhu  Juxia  Zhou  Qinghua  Lv  Lu  Li  Huili  Hu  Wei 《Journal of Solid State Electrochemistry》2022,26(12):2743-2748
Journal of Solid State Electrochemistry - In this work, anion (F, Cl, and S)-doped LiCoO2 cathode materials were systematically investigated by using first-principles calculations. The results show...  相似文献   

14.
Metal–organic frameworks (MOFs) have attracted great attention owing to their controllable morphologies, adjustable aperture, and large specific surface areas. Here, a typical V-MOF (MIL-47) product is successfully synthesized via a one-step hydrothermal method, which is explored to have a one-dimensional layered nanorod-like framework. From a microcosmic point of view, such a V-MOF product is equipped with a rhomboid structure with a large number of empty channels, which is beneficial for guest ions freely inserting in and extracting from the structure. Hence, the V-MOF product is utilized as the cathode material for the aqueous MOF-Zn battery, which exhibits a high initial specific capacity of 320 mA h/g at 0.1 A/g, and a desirable rate capability and cycling performance.  相似文献   

15.
Aqueous Zinc-ion batteries(ZIB) are attracting immense attention because of their merits of excellent safety and quite cheap properties compared with lithium-ion batteries(LIB).Manganese oxide is one of the most important cathode materials of ZIB.In this paper,α-Mn2O3 used as cathode of ZIB is synthesized via Metal-Organic Framework(MOF)-derived method,which delivers a high specific capacity of225 mAh g-1 at 0.05 A g-1 and 92.7 mAh g-1 after 1700 cycles at 2 A g-1.The charge storage mechanism of α-Mn2O3 cathode is found to greatly depend on the discharge current density.At lower current density discharging,the H+ and Zn2+ are successively intercalated into the α-Mn2O3 before and after the turning point of discharge voltage and their discharging products present obviously different morphologies changing from flower-like to large plate-like products.At a higher current density,the low-voltage plateau after the turning point disappears due to the decrease of amount of Zn2+ intercalation and the H+intercalation is dominated in α-Mn2 O3.This study provides significant understanding for future design and research of high-performance Mn-based cathodes of ZIB.  相似文献   

16.
It is urgent to develop high-performance cathode materials for the emerging aqueous zinc-ion batteries with a facile strategy and optimize the related components.Herein,a Ca0.23V2O5·0.95 H2O nanobelt cathode material with a rather large interlayer spacing of 13.0 A is prepared via a one-step hydrothermal approach.The battery with this cathode material and 3 M Zn(CF3SO3)2 electrolyte displays high specific capacity(355.2 mAh g-1 at 0.2 A g-1),great rate capability(240.8 mAh g-1 at 5 A g-1),and excellent cyclability(97.7% capacity retention over 2000 cycles).Such superior performances are ascribed to fast electrochemical kinetics,outstanding electrode/electrolyte interface stability,and nearly dendrite-free characteristic.Instead,when ZnSO4 or Zn(ClO4)2 is used to replace Zn(CF3SO3)2,the electrochemical performances become much inferior,due to the slow electrochemical kinetics,inhomogeneous Zn stripping/plating process,and the formation of large dendrites and byproducts.This work not only discloses a high-performance cathode material for aqueous zinc-ion batteries but also offers a reference for the choice of electrolyte salt.  相似文献   

17.
Self-aggregation and sluggish transport kinetics of cathode materials would usually lead to the poor electrochemical performance for aqueous zinc-ion batteries (AZIBs).In this work,we report the construction of C@VO2composite via anti-aggregation growth and hierarchical porous carbon encapsulation.Both of the morphology of composite and pore structure of carbon layer can be regulated by tuning the adding amount of glucose.When acting as cathode applied for AZIBs,the C@VO2-3...  相似文献   

18.
Aqueous zinc-ion batteries(ZIBs)have got wide attention with the increasing demands for energy resource recently.It has a number of merits compared with lithium-ion batteries,such as enhanced safety,low cost and environmental friendliness.Vanadium-based materials have been developed to serve as the cathodes of ZIBs for many years.But there are also some challenges to construct high performance ZIBs in the future.Herein,we reviewed the research progress of vanadium-based cathodes and discussed the energy storage mechanisms in ZIBs.In addition,we summarized the major challenges faced by vanadium-based cathodes and the corresponding ways to improve electrochemical performance of ZIBs.Finally,some excellent vanadium-based cathodes are summarized to pave the way for future research in ZIBs.  相似文献   

19.
This review demonstrates the approaches to fabricate hybrid cathode materials for lithium-sulfur batteries. This short review does not claim to cover all recently published data; instead, an effort is aimed to show how the critical issues on carbon – sulfur hybrid are addressed based on selected articles in last couple of years. The influence of porous structure of carbon, the confinement effect of polysulfides in narrow micropores, and importance of hierarchical porosity are explained. Besides, the heteroatom doping on carbon in carbon–sulfur hybrids plays a vital role on improvement of bulk electronic conductivity of electrode. This review presents the twin polymerization strategy for direct preparation of nanoscale intermixed hybrid materials. Finally, the formation of sulfur containing copolymers by reacting sulfur melt with functional vinyl monomers are shown in this review with selected examples postulating the respective potential for future generation energy storage technology from the viewpoint of industrial applications.  相似文献   

20.
Defective layered Mn-based materials were synthesized by Li/Na ion exchange to improve their electrochemical activity and Coulombic efficiency. The annealing temperature of the Na precursors was important to control the P3-P2 phase transition, which directly affected the structure and electrochemical characteristics of the final products obtained by ion exchange. The O3-Li0.78[Li0.25Fe0.075Mn0.675]Oδcathode made from a P3-type precursor calcined at 700...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号