首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organoaluminium and -gallium hydroxylamides (Me2GaONMe2)2, (tBu2AlONMe2)2, (tBu2GaONMe2)2 and (Me2AlONiPr2)2 have been prepared by the reaction of the hydroxylamines Me2NOH and iPr2NOH with the trialkylmetal compounds trimethylgallium, tri-tbutylaluminium and tri-tbutylgallium, respectively. All compounds have been characterised by NMR spectroscopy (1H, 13C, 15N, 17O and 27Al), by mass spectrometry and elemental analyses. The crystal structures of the four compounds have been determined, showing that they all form dimers but with different modes of aggregation: (Me2GaONMe2)2 has a Ga2O2N2 six-membered ring, (tBu2AlONMe2)2 and (Me2AlONiPr2)2 have Al2O2 four-membered rings, (tBu2GaONMe2)2 forms a Ga2O2N five-membered ring.  相似文献   

2.
Functionalized o-carboranes are interesting ligands for transition metals. Reaction of LiC2B10H11 with Me2NCH2CH2Cl in toluene afforded 1-Me2NCH2CH2-1,2-C2B10H11 (1). Treatment of 1 with 1 equiv. of n-BuLi gave [(Me2NCH2CH2)C2B10H10]Li ([1]Li), which was a very useful synthon for the production of bisfunctional o-carboranes. Reaction of [1]Li with RCH2CH2Cl afforded 1-Me2NCH2CH2-2-RCH2CH2-1,2-C2B10H10 (R = Me2N (2), MeO (3)). 1 and 2 were also prepared from the reaction of Li2C2B10H10 with excess Me2NCH2CH2Cl. Treatment of [1]Li with excess MeI or allyl bromide gave the ionic salts, [1-Me3NCH2CH2-2-Me-1,2-C2B10H10][I] (4) and [1-Me2N(CH2=CHCH2)CH2CH2-2-(CH2=CHCH2)-1,2-C2B10H10][Br] (6), respectively. Interaction of [1]Li with 1 equiv. of allyl bromide afforded 1-Me2NCH2CH2-2-(CH2=CHCH2)-1,2-C2B10H10 (5). Treatment of [1]Li with excess dimethylfulvene afforded 1-Me2NCH2CH2-2-C5H5CMe2-1,2-C2B10H10 (7). Interaction of [1]Li with excess ethylene oxide afforded an unexpected product 1-HOCH2CH2-2-(CH2=CH)-1,2-C2B10H10 (8). 1 and 3 were conveniently converted into the corresponding deborated compounds, 7-Me2NHCH2CH2-7,8-C2B9H11 (9) and 7-Me2NHCH2CH2-8-MeOCH2CH2-7,8-C2B9H10 (10), respectively, in MeOH-MeOK solution. All of these compounds were characterized by various spectroscopic techniques and elemental analyses. The solid-state structures of 4 and 6-10 were confirmed by single-crystal X-ray analyses.  相似文献   

3.
Jimtaisong A  Luck RL 《Inorganic chemistry》2006,45(25):10391-10402
The dioxo tungsten(VI) and molybdenum(VI) complexes WCl2(O)2(OPMePh2)2, WCl2(O)2dppmO2, and MoCl2(O)2dppmO2, the oxoperoxo compounds WCl2(O)(O2)(OPMePh2)2, WCl2(O)(O2)dppmO2, and MoCl2(O)(O2)dppmO2, and the oxodiperoxo complexes, W(O)(O2)2dppmO2 and Mo(O)(O2)2dppmO2 have been prepared and characterized by IR spectroscopy, 31P NMR spectroscopy, elemental analysis, and X-ray crystallography. The structural and X-ray crystallographic data of compounds WCl2(O)2(OPMePh2)2, WCl2(O)(O2)(OPMePh2)2, MoCl2(O)2dppmO2.4H10O, WCl2(O)2dppmO2, Mo(O)(O2)2dppmO2, and W(O)(O2)2dppmO2 are also detailed. All complexes were studied as catalysts for cis-cyclooctene epoxidation in the presence of tert-butyl hydroperoxide (TBHP) or H2O2 as an oxidant. The Mo-based catalysts showed a superior reactivity over W-based catalysts in the TBHP system. On the other hand, in the H2O2 system, the W-based catalysts (accomplishing nearly 100% epoxidation of cyclooctene in 6 h) are more reactive than the Mo catalysts (<45% under some conditions). Various solvent systems have been investigated, and ethanol is the most suitable solvent for the H2O2 system.  相似文献   

4.
The displacement of CO in a few simple Fe(I)-Fe(I) hydrogenase model complexes by bisphosphine ligands Ph2P-(CH2)n-PPh2 [with n = 1 (dppm) or n = 2 (dppe)] is described. The reaction of [{mu-(SCH2)2CH2}Fe2(CO)6] (1) and [{mu-(SCH2)2N(CH2CH2CH3)}Fe2(CO)6] (2) with dppe gave double butterfly complexes [{mu-(SCH2)2CH2}Fe2(CO)5(Ph2PCH2)]2 (3) and [{mu-(SCH2)2N(CH2CH2CH3)}Fe2(CO)5(Ph2PCH2)]2 (4), where two Fe2S2 units are linked by the bisphosphine. In addition, an unexpected byproduct, [{mu-(SCH2)2N(CH2CH2CH3)}Fe2(CO)5{Ph2PCH2CH2(Ph2PS)}] (5), was isolated when 2 was used as a substrate, where only one phosphorus atom of dppe is coordinated, while the other has been converted to P=S, presumably by nucleophilic attack on bridging sulfur. By contrast, the reaction of 1 and 2 with dppm under mild conditions gave only complexes [{mu-(SCH2)2CH2}Fe2(CO)5(Ph2PCH2PPh2)] (6) and [{mu-(SCH2)2N(CH2CH2CH3)}Fe2(CO)5(Ph2PCH2PPh2)] (8), where one ligand coordinated in a monodentate fashion to one Fe2S2 unit. Furthermore, under forcing conditions, the complexes [{mu-(SCH2)2CH2}Fe2(CO)4{mu-(Ph2P)2CH2}] (7) and [{mu-(SCH2)2N(CH2CH2CH3)}Fe2(CO)4{mu-(Ph2P)2CH2}] (9) were formed, where the phosphine acts as a bidentate ligand, binding to both the iron atoms in the same molecular unit. Electrochemical studies show that the complexes 3, 4, and 9 catalyze the reduction of protons to molecular hydrogen, with 4 electrolyzed already at -1.40 V versus Ag/AgNO3 (-1.0 V vs NHE).  相似文献   

5.
We report the synthesis of a series of mixed valence Mn(II/IV) tetranuclear clusters [Mn(II)(2)Mn(IV)(2)O(2)(heed)(2)(EtOH)(6)Br(2)]Br(2) (), [Mn(II)(2)Mn(IV)(2)O(2)(heed)(2)(H(2)O)(2)Cl(4)].2EtOH.H(2)O (.2EtOH.H(2)O), [Mn(II)(2)Mn(IV)(2)O(2)(heed)(2)(heedH(2))(2)](ClO(4))(4) (), [Mn(II)(2)Mn(IV)(2)O(2)(heed)(2)(MeCN)(2)(H(2)O)(2)(bpy)(2)](ClO(4))(4) () and [Mn(II)(2)Mn(IV)(2)O(2)(heed)(2)(bpy)(2)Br(4)].2MeOH (.2MeOH). Clusters are constructed from the tripodal ligand N,N-bis(2-hydroxyethyl)ethylene diamine (heedH(2)) and represent rare examples of tetranuclear Mn clusters possessing the linear trans zig-zag topology, being the first Mn(II/IV) mixed-valent clusters of this type. The molecular clusters can then be used as building blocks in tandem with the (linear) linker dicyanamide ([N(CN)(2)](-), dca(-)) for the formation of a novel extended network {[Mn(II)(2)Mn(IV)(2)O(2)(heed)(2)(H(2)O)(2)(MeOH)(2)(dca)(2)]Br(2)}(n) (), which exhibits a rare form of the 2D herring bone topology.  相似文献   

6.
The molybdenum and tungsten complexes W2(NtBu)4(pz)4(pzH).(C6H14)0.5 (pz = pyrazolate), M(NtBu)2(Me2pz)2(Me2pzH)2 (Me2pz = 3,5-dimethylpyrazolate), M(NtBu)2(tBu2pz)2 (tBu2pz = 3,5-di-tert-butylpyrazolate), M2(NtBu)4(Me2pz)2Cl2, W(NtBu)2(C2N3(iPr)2)2py2, M(NtBu)2-(CN4CF3)2py2, and W(NtBu)2(PhNNNPh)2 were prepared by various synthetic routes from the starting materials Mo(NtBu)2Cl2, W(NtBu)2(NHtBu)2, and W(NtBu)2Cl2py2. These new complexes were characterized by spectral and analytical methods and by X-ray crystal structure determinations. The volatilities and thermal stabilities were evaluated to determine the potential of the new complexes for use in thin film growth of metal nitride films. Mo(NtBu)2(tBu2pz)2 and W(NtBu)2(tBu2pz)2 were found to have the optimum combination of volatility and thermal stability for application in atomic layer deposition thin film growth procedures.  相似文献   

7.
The multigram syntheses of the protio ligands (2-NC(5)H(4))CH(2)N(CH(2)CH(2)NHSiMe(2)R)(2) (R = Me, H(2)N(2)NN' 3; R = (t)Bu, H(2)N(2)NN() 4) are described via reactions of the previously reported (2-NC(5)H(4))CH(2)N(CH(2)CH(2)NH(2))(2) (1). A new synthesis of 1 is reported starting from 2-aminomethylpyridine and N-tosylaziridine, proceeding via (2-NC(5)H(4))CH(2)N(CH(2)CH(2)NHTs)(2) (2). Reaction of H(2)N(2)NN' or H(2)N(2)NN* with (n)BuLi gives good yields of the dilithiated derivatives Li(2)N(2)NN' and Li(2)N(2)NN*. Reaction of H(2)N(2)NN' or H(2)N(2)NN* with [MCl(2)(CH(2)SiMe(3))(2)(Et(2)O)(2)] gives the cis-dichloride complexes [MCl(2)(L)] (L = N(2)NN', M = Zr 7 or Hf 8; L = N(2)NN(), M = Zr 9). The corresponding reactions of H(2)N(2)NN' or H(2)N(2)NN* with [Zr(NMe(2))(4)] afford the bis(dimethylamide) derivatives [Zr(NMe(2))(2)(L)] (L = N(2)NN' 10 or N(2)NN* 11). All of these protonolysis reactions proceed smoothly and in good yields. Attempts to prepare the titanium complexes [Ti(X)(2)(N(2)NN')] (X = Cl or NMe(2)) were unsuccessful. The X-ray crystal structures of (2-NC(5)H(4))CH(2)N(CH(2)CH(2)NHTs)(2).EtOH, [ZrCl(2)(N(2)NN')].0.5C(6)H(6), [Zr(NMe(2))(2)(N(2)NN')], and [Zr(NMe(2))(2)(N(2)NN*)] are reported.  相似文献   

8.
Treatment of cis-[RuCl2(dppm)2] (dppm = bis(diphenylphosphino)methane) with dithiocarbamates, NaS2CNR2 (R = Me, Et) and [H2NC5H10][S2CNC5H10], yields cations [Ru(S2CNR2)2(dppm)2](+) and [Ru(S2CNC5H10)2(dppm)2](+), respectively. The zwitterions S2CNC4H8NHR (R = Me, Et) react with the same metal complex in the presence of base to yield [Ru(S2CNC4H8NR)(dppm)2](+). Piperazine or 2,6-dimethylpiperazine reacts with carbon disulfide to give the zwitterionic dithiocarbamate salts H2NC4H6(R2-3,5)NCS2 (R = H; R = Me), which form the complexes [Ru(S2CNC4H6(R2-3,5)NH2)(dppm)2](2+) on reaction with cis-[RuCl2(dppm)2]. Sequential treatment of [Ru(S2CNC4H8NH2)(dppm)2](2+) with triethylamine and carbon disulfide forms the versatile metalla-dithiocarbamate complex [Ru(S2CNC4H8NCS2)(dppm)2] which reacts readily with cis-[RuCl2(dppm)2] to yield [{Ru(dppm)2}2(S2CNC4H8NCS2)]. Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with [Os(CH=CHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] (BTD = 2,1,3-benzothiadiazole), [Pd(C6H4CH2NMe2)Cl]2, [PtCl2(PEt3)2], and [NiCl2(dppp)] (dppp = 1,3-bis(diphenylphosphino)propane) results in the heterobimetallic complexes [(dppm)2Ru(S2CNC4H8NCS2)ML(n))](m+) (ML(n) = Os(CH=CHC6H4Me-4)(CO)(PPh3)2](+), m = 1; ML(n) = Pd(C,N-C6H4CH2NMe2), m = 1; ML(n) = Pt(PEt3)2, m = 2; ML(n) = Ni(dppp), m = 2). Reaction of [NiCl2(dppp)] with H2NC4H8NCS2 yields the structurally characterized compound, [Ni(S2CNC4H8NH2)(dppp)](2+), which reacts with base, CS2, and cis-[RuCl2(dppm)2] to provide an alternative route to [(dppm)2Ru(S2CNC4H8NCS2)Ni(dppp)](+). A further metalla-dithiocarbamate based on cobalt, [CpCo(S2CNC4H8NH2)(PPh3)](2+), is formed by treatment of CpCoI2(CO) with S2CNC4H8NH2 followed by PPh3. Further reaction with NEt3, CS2, and cis-[RuCl2(dppm)2] yields [(Ph3P)CpCo(S2CNC4H8NCS2)Ru(dppm)2](2+). Heterotrimetallic species of the form [{(dppm)2Ru(S2CNC4H8NCS2)}2M](2+) result from the reaction of [Ru(S2CNC4H8NCS2)(dppm)2] and M(OAc)2 (where M = Ni, Cu, Zn). Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with Co(acac)3 and LaCl3 results in the formation of the compounds [{(dppm)2Ru(S2CNC4H8NCS2)}3Co](3+) and [{(dppm)2Ru(S2CNC4H8NCS2)}3La](3+), respectively. The electrochemical behavior of selected examples is also reported.  相似文献   

9.
The reaction of the digold(I) diacetylide [(AuCCCH2OC6H4)2CMe2] with diphosphane ligands can lead to formation of either macrocyclic ring complexes or [2]catenanes by self-assembly. This gives an easy route to rare organometallic [2]catenanes, and the effect of the diphosphane ligand on the selectivity of self-assembly is studied. With diphosphane ligands Ph2P(CH2)xPPh2, the simple ring complex [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)] is formed selectively when x = 2, but the [2]catenanes [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)]2 are formed when x = 4 or 5. When x = 3, a mixture of the simple ring and [2]catenane is formed, along with the "double-ring" complex, [Au4[(CCCH2OC6H4)2CMe2]2(Ph2P(CH2)3PPh2)2] and a "hexamer" Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)3PPh2)]6] whose structure is not determined. A study of the equilibria between these complexes by solution NMR techniques gives insight into the energetics and mechanism of [2]catenane formation. When the oligomer [(AuCCCH2OC6H4)2CMe2] was treated with a mixture of two diphosphane ligands, or when two [2]catenane complexes [[Au2[(CCCH2OC6H4)2CMe2](diphosphane)]2] were allowed to equilibrate, only the symmetrical [2]catenanes were formed. The diphosphanes Ph2PCCPPh2, trans-[Ph2PCH=CHPPh2] and (Ph2PC5H4)2Fe give the corresponding ring complexes [Au2[(CCCH2OC6H4)2CMe2](diphosphane)], and the chiral, unsymmetrical diacetylide [Au2[(CCCH2OC6H4C(Me)(CH2CMe2)C6H3OCH2CC)] gives macrocyclic ring complexes with all diphosphane ligands Ph2P(CH2)xPPh2 (x = 2-5).  相似文献   

10.
Reduction of [P 2N 2]ZrCl 2 (where P 2N 2 = PhP(CH 2SiMe 2NSiMe 2CH 2) 2PPh) by KC 8 under N 2 generates the dinuclear dinitrogen complex ([P 2N 2]Zr) 2(mu-eta (2):eta (2)-N 2) and impurities in varying yields depending on the solvent and temperature. The toluene complex [P 2N 2]Zr(eta (6)-C 7H 8) along with a dinuclear species with bridging PC 6H 5 groups is observable. Also observable in the crude reaction mixtures is the mu-oxodiazenido derivative, ([P 2N 2]Zr) 2(mu-eta (2):eta (2)-N 2H 2)(mu-O), due to reaction with trace H 2O. This paper reports the full details of the preparation of ([P 2N 2]Zr) 2(mu-eta (2):eta (2)-N 2) including an improved method that involves reduction at low temperatures in a tetrahydrofuran solvent. Also reported is a reproducible synthesis of the oxodiazenido complex along with the X-ray structures of the dinitrogen complex and the oxodiazenido derivative.  相似文献   

11.
Three new Mo(V) dithiolene compounds have been synthesized by addition of alkynes ((Me(3)Si)(2)C(2) (TMSA), (Me(3)Si)(2)C(4), and (Ph)(2)C(4) to MoO(2)S(2)(2-) in a MeOH/NH(3) mixture: [Mo(2)(O)(2)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)H(2))](2)(-) 1, [Mo(2)(O)(X)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)Ph(C(2)Ph))](2-) 2 (X = O or S), and [Mo(2)(O)(2)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)H(C(2)H))](2-) 3. The structure of 1 as determined by single-crystal X-ray diffraction study (space group Pbca, a = 13.3148(1) A, b = 15.7467(4) A, c = 28.4108(7) A, V = 5956.7(2) A(3)) is discussed. 2 and 3 have been identified by ESMS (electrospray mass spectrometry), (1)H NMR, (13)C NMR, and infrared spectroscopies. This investigation completes our previous study devoted to the addition of DPA (C(2)Ph(2)) to MoO(2)S(2)(2-) which led to [Mo(2)(O)(X)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)Ph(2))](2-) 4 (X = O or S). A reaction scheme is proposed to explain the formation of the different species present in solution. The reactivity of the remaining nucleophilic site of these complexes (eta(2)-S(2)) toward dicarbomethoxyacetylene (DMA) is also discussed.  相似文献   

12.
The preparation and structural characterization of scandium and f-element complexes derived from the disiloxanediolate dianion, [(Ph2SiO)2O]2-, are reported. Reactions of in situ prepared Ln[N(SiMe3)2]3 (Ln = Eu, Sm, Gd) with (Ph2SiOH)2O in different stoichiometries afforded the lanthanide disiloxanediolates [Eu[[(Ph2SiO)2O]Li(Et2O)]3] (1), [[[(Ph2SiO)2O]Li(dme)]2SmCl(dme)] (2), and [[[((Ph2SiO)2O]Li(thf)2]2GdN(SiMe3)2] (3). In situ formed (Ph2SiOLi)2O reacted with anhydrous NdBr3 (molar ratio 3:1) to give polymeric [[Nd[(Ph2SiO)2O]3[mu-Li(thf)]2[mu2LiBrLi(thf)(Et2O)]]n] (4). Treatment of 3 with Ph2Si(OH)2 in the presence of acetonitrile yielded the dilithium trisiloxanediolate derivative [[Ph2Si(OSiPh2O)2][Li(MeCN)]2]2 (5), which according to an X-ray analysis displays an Li4O4 heterocubane structure. The trinuclear scandium complex [[[(Ph2SiO)2O]Sc(acac)2]2Sc(acac)] (6) was obtained by reaction of [(C5Me5)Sc(acac)2] (C5Me5 = eta5-pentamethylcyclopentadienyl) with (Ph2SiOH)2O in a 3:2 molar ratio. Selective formation of the colorless uranium(VI) derivative [U[Ph2Si(OSiPh20)2]2[(Ph2SiO)2O]] (7) was observed when uranocene, U(eta8-C8H8)2, was allowed to react with (Ph2SiOH)2O. An X-ray diffraction study of the solvated derivative [U[Ph2Si(OSiPh2O)2]2[(Ph2SiO)2O]].Et2O.TMEDA (TMEDA= N,N,N',N'-tetramethyl-ethylenediamine) (7a) revealed the presence of both the original [(Ph2SiO)2O]2- dianion as well as the ring-enlarged [Ph2Si(OSiPh2O)2]2- ligand in the same molecule.  相似文献   

13.
采用量子化学计算方法研究了H2O2 氧化N2 生成N2O 和H2O 的机理.结果发现, H2O2 氧化N2 先通过1 个四元环过渡态形成中间体H2N2O2 分子,H2N2O2 再通过一个五元环过渡态形成N2O和H2O.根据计算得到的每步反应的活化能,得知H2O2 氧化N2 生成中间体H2N2O2 分子是整个反应的控制步骤.  相似文献   

14.
The multidentate dicarbollide ligand nido-7,8-(NMe2CH2)2-7,8-C2B9H11 has been prepared, structurally characterized, and employed in the preparation of the novel mono- and trimetallic titanium complexes [eta5:eta1-(NMe2CH2)C2B9H9CH2NMe2]Ti(NMe2)2 and [eta5:eta1-[(NMe2CH2)C2B9H9CH2NMe2]Ti(NMe2)]2-mu3-O-Ti(NMe2)2.  相似文献   

15.
A series of dinuclear chelate complexes of the general composition [Rh2(kappa2-L)2(mu-CR2)2(mu-SbiPr3)] (R = Ph, p-Tol; L = CF3CO2-, acac-, acac-f3-) and [Rh2Cl(kappa2-L)(mu-CR2)2(mu-SbiPr3)] (R = Ph, p-Tol; L = acac-, acac-f3-) has been prepared by replacement of the chloro ligands in the precursors [Rh2Cl2(mu-CR2)2(mu-SbiPr3)] by anionic chelates. The lability of the SbiPr3 bridge in the rhodium dimers is illustrated by the reactions of [Rh2(kappa2-acac)2(mu-CR2)2(mu-SbiPr3)] (7, 8) with Lewis bases such as CO, CNtBu, and SbEt3 which lead to the formation of the substitution products [Rh2(kappa2-acac)2(mu-CR2)2(mu-L')] (13-16) in excellent yields. Treatment of 7 and 8 with sterically demanding tertiary phosphanes PR3 (R3 = iPr3, iPr2Ph, iPrPh2, Ph3) affords the mixed-valence Rh0-RhII complexes [(kappa2-acac)2Rh(mu-CPh2)2Rh(PR3)] (21-24) and [(kappa2-acac)2Rh(mu-C(p-Tol)2]2Rh(PiPr3)] (25) for which there is no precedence. The terminal PiPr3 ligand of 21 is easily displaced by alkynes, CNtBu, and CO to give, by preserving the [(kappa2-acac)2Rh(mu-CPh2)2Rh] molecular core, the related dinuclear compounds 26-31 in which the coordination number of the Rh0 center is 3, 4, or 5. The molecular structures of [Rh2Cl(kappa2-acac)(mu-CPh2)2(mu-SbiPr3)] (5), [Rh2(kappa2-acac)2(mu-CPh2)2(mu-CO)] (13), [(kappa2-acac)2Rh(mu-CPh2)2Rh(PiPr3)] (21), and [(kappa2-acac)2Rh(mu-CPh2)2Rh(CNtBu)2] (30) have been determined crystallographically.  相似文献   

16.
The unsaturated complexes [W2Cp2(mu-PR2)(mu-PR'2)(CO)2] (Cp = eta5-C5H5; R = R' = Ph, Et; R = Et, R' = Ph) react with HBF4.OEt2 at 243 K in dichloromethane solution to give the corresponding complexes [W2Cp2(H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which contain a terminal hydride ligand. The latter rearrange at room temperature to give [W2Cp2(mu-H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which display a bridging hydride and carbonyl ligands arranged parallel to each other (W-W = 2.7589(8) A when R = R' = Ph). This explains why the removal of a proton from the latter gives first the unstable isomer cis-[W2Cp2(mu-PPh2)2(CO)2]. The molybdenum complex [Mo2Cp2(mu-PPh2)2(CO)2] behaves similarly, and thus the thermally unstable new complexes [Mo2Cp2(H)(mu-PPh2)2(CO)2]BF4 and cis-[Mo2Cp2(mu-PPh2)2(CO)2] could be characterized. In contrast, related dimolybdenum complexes having electron-rich phosphide ligands behave differently. Thus, the complexes [Mo2Cp2(mu-PR2)2(CO)2] (R = Cy, Et) react with HBF4.OEt2 to give first the agostic type phosphine-bridged complexes [Mo2Cp2(mu-PR2)(mu-kappa2-HPR2)(CO)2]BF4 (Mo-Mo = 2.748(4) A for R = Cy). These complexes experience intramolecular exchange of the agostic H atom between the two inequivalent P positions and at room-temperature reach a proton-catalyzed equilibrium with their hydride-bridged tautomers [ratio agostic/hydride = 10 (R = Cy), 30 (R = Et)]. The mixed-phosphide complex [Mo2Cp2(mu-PCy2)(mu-PPh2)(CO)2] behaves similarly, except that protonation now occurs specifically at the dicyclohexylphosphide ligand [ratio agostic/hydride = 0.5]. The reaction of the agostic complex [Mo2Cp2(mu-PCy2)(mu-kappa2-HPCy2)(CO)2]BF4 with CN(t)Bu gave mono- or disubstituted hydride derivatives [Mo2Cp2(mu-H)(mu-PCy2)2(CO)2-x(CNtBu)x]BF4 (Mo-Mo = 2.7901(7) A for x = 1). The photochemical removal of a CO ligand from the agostic complex also gives a hydride derivative, the triply bonded complex [Mo2Cp2(H)(mu-PCy2)2(CO)]BF4 (Mo-Mo = 2.537(2) A). Protonation of [Mo2Cp2(mu-PCy2)2(mu-CO)] gives the hydroxycarbyne derivative [Mo2Cp2(mu-COH)(mu-PCy2)2]BF4, which does not transform into its hydride isomer.  相似文献   

17.
刘彩明  郝项 《无机化学学报》2020,36(6):1105-1112
用溶剂热方法合成了2个新的3d-4f异金属四核簇合物:[Zn2Ln2(salen)2(CO2PyCH2O)2(MeOH)2](ClO42·2MeOH(Ln=Dy(1),Tb(2);H2salen=N,N'-双(3-甲氧基水杨基)-1,3-二氨基丙烷;HCO2PyCH2OH=6-羧基吡啶-2-甲醇)。它们是由锌(Ⅱ)Schiff碱构筑模块和6-羧基吡啶-2-甲醇辅助配体组装而成的Zn-Ln2-Zn型簇合物。磁性测量表明稀土离子间存在铁磁性相互作用。Zn2Dy2配合物1在2 000 Oe直流磁场下显示出磁弛豫行为;而Zn2Tb2配合物2不但有磁场导致的磁弛豫行为,而且还具有荧光性质。  相似文献   

18.
Reaction of [Pt(CH3)2(COD)] (COD = 1,5-cyclooctadiene) with Ph2PCCCCPPh2 led to a mixture of [{Pt(CH3)2}2(mu-Ph2PC4PPh2)2] (1) and [{Pt(CH3)2}3(mu-Ph2PC4PPh2)3] (2). Reaction of [PtCl2(COD)] with Ph2PCCCCPPh2 led to a mixture of the thermally unstable compounds [{PtCl2}2(mu-Ph2PC4PPh2)2] (3) and [{PtCl2}3(mu-Ph2PC4PPh2)3] (4) which transform into [{PtMe2}2{mu-C8(PPh2)4}] (5) and [{PtMe2}3{mu3-C12(PPh2)6}] (6) containing 8-membered diene-diyne and 12-membered triene-triyne rings, respectively. Compound 2 can be converted to [{PtMe2}3{C12(PPh2)6}] (7) by heating with CuCl at 80 degrees C, while 1 can be heated without significant cycloaddition.  相似文献   

19.
Five-coordinate gallium and aluminium dihydrides, H2Ga[N(CH2CH2NMe2)2] () and H2Al[N(CH2CH2NMe2)2] (), were synthesized and found to be volatile and thermally stable. and reacted with H3Ga(NMe3) and H3Al(NMe3), respectively, to form H2Ga[N(CH2CH2NMe2)2]GaH3 () and H2Al[N(CH2CH2NMe2)2]AlH3 (), in which the amido nitrogen bridged between the MH2 and MH3 groups (M=Ga or Al). A mixed metal complex, H2Al[N(CH2CH2NMe2)2]GaH3 () was obtained from the reaction of with H3Al(NMe3) or with H3Ga(NMe3), and a crystal consisting of a mixture of and was structurally characterized. The five-coordinate chloro derivative, Cl2Ga[N(CH2CH2NMe2)2] (), was synthesized and characterized.  相似文献   

20.
Acid-catalysed hydrolysis of [CH2[(Sn(Ph2)CH2Si(OiPr)Me2]2] followed by subsequent reaction with mercuric chloride in acetone afforded the novel silicon- and tin-containing eight-membered ring [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] in good yield, the crystal structure of which is reported. 119Sn NMR and X-ray studies indicate that [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] acts as a bidentate Lewis acid towards chloride ions exclusively forming the 1:1 complex [(Ph3P)2N]+[cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2OCl]- upon addition of [(Ph3P)2N]+Cl- . Also reported are the synthesis and structure of [K(dibenzo[18]crown-6)]+[cyclo-CH2(Sn(Cl2)CH2Si(Me2)]2OF]-, the first completely characterised organostannate with a C2SnCl2F- substituent pattern. No ring-opening polymerisation could be achieved for [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] or for its perphenylated derivative [cyclo-CH2[Sn(Ph2)CH2Si(Me2)]2O]. The reaction of [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] with Me3O+BF4- gave the tin-containing fluorosilane [CH2[Sn(Cl2)CH2Si(F)Me2]2], in which the Si-F bond is activated by intermolecular Si-F...Sn interactions in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号