首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
The stability issue has become one of the main challenges for the commercialization of perovskite solar cells(PSCs).Formamidinium(FA)-based perovskites have shown great promise owing to their improved thermal and moisture stability.However,these perovskites are suffering from phase transition and separation.Here,a method of incorporating of γ-aminobutyric acid(GABA) and cesium cations into FAPbl3 is developed to improve the phase stability.It is demonstrated that the crystallinity of α-FAPbl3 phase is greatly improved and the phase transition temperature is significantly dropped.The resultant solar cell therefore obtains a champion power conversion efficiency(PCE) of 23.71%,which is one of the highest efficiencies for methylammonium-free PSCs.Furthermore,it shows an impressively enhanced stability under illumination,exhibiting the great potential of FA-based perovskites for efficient and stable solar cells.  相似文献   

2.
All-inorganic cesium lead bromide(CsPbBr3)perovskite is attracting growing interest as functional materials in photovoltaics and other optoelectronic devices due to its superb stability.However,the fabrication of high-quality CsPbBr3 films still remains a big challenge by solution-process because of the low solubility of the cesium precursor in common solvents.Herein,we report a facile solution-processed approach to prepare high-quality CsPbBr3 perovskite films via a two-step spin-coating method,in which the Cs Br methanol/H2 O mixed solvent solution is spin-coated onto the lead bromide films,followed by an isopropanol-assisted post-treatment to regulate the crystallization process and to control the film morphology.In this fashion,dense and uniform CsPbBr3 films are obtained consisting of large crystalline domains with sizes up to microns and low defect density.The effectiveness of the resulting CsPbBr3 films is further examined in perovskite solar cells(PSCs)with a simplified planar architecture of fluorine–doped tin oxide/compact Ti O2/CsPbBr3/carbon,which deliver a maximum power conversion efficiency of 8.11%together with excellent thermal and humidity stability.The present work offers a simple and effective strategy in fabrication of high-quality CsPbBr3 films for efficient and stable PSCs as well as other optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号