首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 817 毫秒
1.
Several derivatization procedures with o-phthaldialdehyde-N-acetylcysteine (OPA-NAC) were compared for a rapid analysis of primary aliphatic short-chain monoamines in water samples by HPLC using a LiChorospher analytical separation column (100RP18 mm i.d., 5 μm). Both the solution and the solid-support assisted off-line derivatization on C18 SPE cartridges were inadequate options because of beginning degradation processes of the instable isoindol derivatives during their transfer to the analytical column. This problem was precluded with the on-column or solid-support assisted on-line derivatization. In the last mentioned procedure, the derivatization took place in a Hypersil C18 precolumn ( mm i.d., 30 μm) connected with an additional preconcentration step resulting in better detection limits (0.002-0.040 μg ml−1 requiring only 150 μl of water sample) than in the on-column procedure (0.08-0.16 μg ml−1). The improved sample handling, the better control of parameters affecting reaction rates, the fully automation of this method with only 10 min analysis time for each sample are further advantageous. The potential of the solid-support assisted on-line derivatization was outlined and applied to water samples from several sources. Recovery values near 100% were obtained.  相似文献   

2.
The feasibility of microwave-accelerated derivatization for capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection was evaluated. The derivatization reaction was performed in a domestic microwave oven. Histidine (His), 1-methylhistidine (1-MH) and 3-methylhistidine (3-MH) were selected as test analytes and fluorescein isothiocyanate (FITC) was chosen as a fluorescent derivatizing reagent. Parameters that may affect the derivatization reaction and/or subsequent CE separation were systematically investigated. Under optimized conditions, the microwave-accelerated derivatization reaction was successfully completed within 150 s, compared to 4-24 h in a conventional water-bath derivatization process. This will remarkably reduce the overall analysis time and increase sample throughput of CE-LIF. The detection limits of this method were found to be 0.023 ng/mL for His, 0.023 ng/mL for 1-MH, and 0.034 ng/mL for 3-MH, respectively, comparable to those obtained using traditional derivatization protocols. The proposed method was characterized in terms of precision, linearity, accuracy and successfully applied for rapid and sensitive determination of these analytes in human urine.  相似文献   

3.
Zhong H  Li N  Zhao F  Li KA 《Talanta》2004,62(1):37-42
A new protein determination method by enhanced Rayleigh light scattering (RLS) technique has been developed. In acid condition (pH=3.60), RLS of 1,2-dihydroxyanthraquinone-3-sulfonate (Alizarin Red S) can be greatly enhanced by addition of proteins, resulting in two characteristic peaks, 360 and 505 nm, respectively. The new protein assay is based on the RLS enhancement and spectrum change. The optimum condition for the reaction was investigated. The linear range is 0.20-24.9 μg ml−1 for BSA and 0.20-15.5 μg ml−1 for HSA. The detection limits (S/N=3) are 9.59 ng ml−1 for BSA and 9.51 ng ml−1 for HSA. The results of determination for human serum samples were comparable to those obtained by Bradford method. The binding stoichiometry was determined.  相似文献   

4.
The potential of microwave-assisted derivatization techniques in systematic toxicological analysis using gas chromatography coupled with mass spectrometry (GC–MS) was evaluated. Special emphasis was placed on the use of dedicated microwave reactors incorporating online temperature and pressure control. The use of such equipment allowed a detailed analysis of several microwave-assisted derivatization protocols comparing the efficiency of microwave and conventional heating methods utilizing a combination of GC–MS and liquid chromatography coupled with mass detection (LC–MS and LC–MS/MS) techniques. These studies revealed that for standard derivatization protocols such as acetylation (exemplified for codeine and morphine), pentafluoropropionylation (for 6-monoacetylmorphine) and trimethylsilylation (for Δ9-tetrahydrocannabinol) a reaction time of 5 min at 100 °C in a microwave reactor was sufficient to allow for an effective derivatization. Control experiments using standard operating procedures (30 min at 60 °C conventional heating) indicated that the faster derivatization under microwave irradiation is a consequence of the higher reaction temperatures that can rapidly be attained in a sealed vessel and the more efficient heat transfer to the reaction mixture applying direct in core microwave dielectric heating. The results suggest that microwave derivatization procedures can significantly reduce the overall analysis time and increase sample throughput for GC–MS-based analytical methods.  相似文献   

5.
This paper describes micropatterning of proteins on the surface of three-dimensional hydrogel microstructures. Poly(ethylene glycol) (PEG)-based hydrogel microstructures were fabricated on a glass substrate using a poly(dimethylsiloxane) (PDMS) replica as a molding insert and photolithography. The lateral dimension and height of the hydrogel microstructures were easily controlled by the feature size of the photomask and depth of the PDMS replica, respectively. Bovine serum albumin (BSA), a model protein, was covalently immobilized to the surface of the hydrogel microstructure via a 5-azidonitrobenzoyloxy N-hydroxysuccinimide bifunctional linker at a surface density of 1.48 mg cm−2. The immobilization of BSA on the PEG hydrogel surface was demonstrated with XPS by confirming the formation of a new nitrogen peak, and the selective immobilization of fluorescent-labeled BSA on the outer region of the three-dimensional hydrogel micropattern was demonstrated by fluorescence. A hydrogel microstructure could immobilize two different enzymes separately, and sequential bienzymatic reaction was demonstrated by reacting glucose and Amplex Red with a hydrogel microstructure where glucose oxidase was immobilized on the surface and peroxidase was encapsulated. Activity of immobilized glucose oxidase was 16.5 U mg−1, and different glucose concentration ranged from 0.1 to 20 mM could be successfully detected.  相似文献   

6.
The fluorogenic derivatization method for aryl halide was developed for the first time. This method was based on the formation of fluorescent biphenyl structure by Suzuki coupling reaction between aryl halides and non-fluorescent phenylboronic acid (PBA). We measured the fluorescence spectra of the products obtained by the reaction of p-substituted aryl bromides (i.e., 4-bromobenzonitrile, 4-bromoanisole, 4-bromobenzoic acid ethyl ester and 4-bromotoluene) with PBA in the presence of palladium (II) acetate as a catalyst. The significant fluorescence at excitation maximum wavelength of 275–290 nm and emission maximum wavelength of 315–350 nm was detected in all the tested aryl bromides. This result demonstrated that non-fluorescent aryl bromides could be converted to the fluorescent biphenyl derivatives by the coupling reaction with non-fluorescent PBA. We tried to determine these aryl bromides by HPLC-fluorescence detection with pre-column derivatization. The aryl bromide derivatives were detected on the chromatogram within 30 min without any interfering peak derived from the reagent blank. The detection limits (S/N = 3) for aryl bromides were 13–157 fmol/injection.  相似文献   

7.
Wu S  Sun L  Ma J  Yang K  Liang Z  Zhang L  Zhang Y 《Talanta》2011,83(5):1748-1753
A poly (acrylamide-co-methylenebisacrylamide) (poly (AAm-co-MBA)) monolith was prepared by thermal polymerization in the 100 or 250 μm i.d. capillary. The monolithic support was activated by ethylenediamine followed by glutaraldehyde. Trypsin was then introduced to form an immobilized enzyme reactor (IMER). The prepared IMER showed a reliable mechanical stability and permeability (permeability constant K = 2.65 × 10−13 m2). With BSA as the model protein, efficient digestion was completed within 20 s, yielding the sequence coverage of 57%, better than that obtained from the traditional in-solution digestion (42%), which took about 12 h. Moreover, BSA down to femtomole was efficiently digested by the IMER and positively identified by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). To test the applicability of IMER for complex sample profiling, proteins extracted from Escherichia coli were digested by the IMER and further analyzed by nanoreversed phase liquid chromatography-electrospray ionization-mass spectrometry (nanoRPLC-ESI-MS/MS). In comparison to in-solution digestion, despite slightly fewer proteins were positively identified at a false discovery rate (FDR) of ∼1% (333 vs 411), the digestion time used was largely shortened (20 s vs 24 h), implying superior digestion performance for the high throughput analysis of complex samples.  相似文献   

8.
Nanometer-sized fluorescent particles have been successfully synthesized. A synchronous fluorescence method, with high sensitivity and selectivity, has been developed for rapid determination of protein with functionalized CdS as a fluorescence probe. When Δλ=260 nm, maximum synchronous fluorescence is produced at 274 nm at pH 7.0. Under optimal conditions, the calibration graphs are linear over the range 0.1-3.0 μg ml−1 for bovine serum albumin (BSA), 0.1-11.0 μg ml−1 for γ-globulin (γ-G) and 0.1-1.4 μg ml−1 for human serum albumin (HSA), respectively. Limits of determination were 0.01 μg ml−1 for BSA, 0.019 μg ml−1 for γ-G and 0.021 μg ml−1 for HSA, respectively. The relative standard deviations of seven replicate measurements were 1.8% for 1.0 μg ml−1 BSA, 2.2% for 1.0 μg ml−1 γ-G and 2.3% for 1.0 μg ml−1 HSA.  相似文献   

9.
A sensitive and selective high-performance liquid chromatographic method has been developed and validated for the determination of nateglinide in human plasma. Nateglinide and the internal standard, undecylenic acid, were extracted from plasma by liquid-liquid extraction using a mixture of ethyl acetate-diethyl ether, 50:50 (v/v). Pre-column derivatization reaction was performed using a coumarin-type fluorescent reagent, N-(7-methoxy-4-methyl-2-oxo-2H-6-chromenyl)-2-bromoacetamide. The derivatization proceeded in acetone in the presence of potassium carbonate and catalyzed by 18-crown-6 ether. The fluorescent derivatives were separated under isocratic conditions on a Hypersil BDS-C8 analytical column (250.0 mm × 2.1 mm i.d., particle size 5 μm) with a mobile phase that consisted of 65% acetonitrile in water and pumped at a flow rate of 0.50 mL min−1. The excitation and emission wavelengths were set at 345 and 435 nm, respectively. The assay was linear over a concentration range of 0.05-16.00 μg mL−1 for nateglinide with a limit of quantitation of 0.05 μg mL−1. Quality control samples (0.05, 4.50 and 16.00 μg mL−1) in five replicates from five different runs of analysis demonstrated intra-assay precision (%coefficient of variation <6.8%), inter-assay precision (%coefficient of variation <1.6%) and an overall accuracy (%relative error) less than −3.4%. The method can be used to quantify nateglinide in human plasma covering a variety of pharmacokinetic or bioequivalence studies.  相似文献   

10.
A gas chromatography–mass spectrometric method was developed in this study in order to determine fluoride in plasma and urine after derivatization with 2-(bromomethyl)naphthalene. 2-Fluoronaphthalene was chosen as the internal standard. The derivatization of fluoride was performed in the biological sample and the best reaction conditions (10.0 mg mL−1 of 2-(bromomethyl)naphthalene, 1.0 mg mL−1 of 15-crown-5-ether as a phase transfer catalyst, pH of 7.0, reaction temperature of 70 °C, and heating time of 70 min) were established. The organic derivative was extracted with dichloromethane and then measured by a gas chromatography–mass spectrometry. Under the established condition, the detection limits were 11 μg L−1 and 7 μg L−1 by using 0.2 mL of plasma or urine, respectively. The accuracy was in a range of 100.8–107.6%, and the precision of the assay was less than 4.3% in plasma or urine. Fluoride was detected in a concentration range of 0.12–0.53 mg L−1 in six urine samples after intake of natural mineral water containing 0.7 mg L−1 of fluoride.  相似文献   

11.
Chen X  Wang J 《Talanta》2006,69(3):681-685
A sensitive procedure for the quantification of total protein bovine serum albumen (BSA) in human serum was presented with sequential injection sampling and fluorometric detection. A few microliters of sample and fluorescamine solutions were aspirated into the holding coil to facilitate the reaction of protein with fluorescamine by giving rise to a blue-green-fluorescent derivative. The derivative was afterwards excited by a 400 nm radiation from a UV radiator, and the emitted fluorescence was monitored at the wavelength of 470 nm. By loading 5.0 μl of sample and 4.0 μl of fluorescamine solution 0.075% (m/v), a linear calibration graph was obtained within 0.3-12.5 μg ml−1, and a detection limit (3σ) of 0.1 μg ml−1 was achieved, along with a sampling frequency of 40 h−1 and a R.S.D. value of 2.1% at the 5.0 μg ml−1 levels. Protein contents in human serums were analyzed by using the present procedure, and reasonable agreements were obtained with those obtained by a documented spectrophotometric (Biuret) method.  相似文献   

12.
Chen L  Ding L  Yu A  Yang R  Wang X  Li J  Jin H  Zhang H 《Analytica chimica acta》2007,596(1):164-170
This paper describes a new method for the determination of total flavonoids in Platycladus orientalis (L.) Franco. The method was based on dynamic microwave-assisted extraction (DMAE) coupled with on-line derivatization and ultraviolet-visible (UV-vis) detection. The influence of the experimental conditions was tested. Maximum extraction yield was achieved using 80% aqueous methanol of extraction solvent; 80 W of microwave output power; 5 min of extraction time; 1.0 mL min−1 of extraction solvent flow rate. The derivatization reaction between aluminium chloride and flavonoid is one of the most sensitive and selective reactions for total flavonoids determination. The optimized derivatization conditions are as follows: derivatization reagent 1.5% aluminium chloride methanol solution; reaction coil length 100 cm; derivatization reagent flow rate 1.5 mL min−1. The detection and quantification limits obtained are 0.28 and 0.92 mg g−1, respectively. The intra-day and inter-day precisions (R.S.D.) obtained are 1.5% and 4.6%, respectively. Mean recovery is 98.5%. This method was successfully applied to the determination of total flavonoids in P. orientalis (L.) Franco and compared with heat reflux extraction. The results showed that the higher extraction yield of total flavonoids was obtained by DMAE with shorter extraction time (5 min) and small quantity of extraction solvent (5 mL).  相似文献   

13.
Liu C  Mo YY  Chen ZG  Li X  Li OL  Zhou X 《Analytica chimica acta》2008,621(2):171-177
A new dual detection system for microchip is reported. Both fluorescence detector (FD) and contactless conductivity detector (CCD) were combined together and integrated on a microfluidic chip. They shared a common detection position and responded simultaneously. A blue light-emitting diode was used as excitation source and a small planar photodiode was used to collect the emitted fluorescence in fluorescence detection, which made the device more compact and portable. The coupling of the fluorescence and contactless conductivity modes at the same position of a single separation channel enhanced the detection characterization of sample and offered simultaneous detection information of both fluorescent and charged specimen. The detection conditions of the system were optimized. K+, Na+, fluorescein sodium, fluorescein isothiocyanate (FITC) and FITC-labeled amino acids were used to evaluate the performance of the dual detection system. The limits of detection (LOD) of FD for fluorescein Na+, FITC, FITC-labeled arginine (Arg), glycine (Gly) and phenylalanine (Phe) were 0.02 μmol L−1, 0.05 μmol L−1, 0.16 μmol L−1, 0.15 μmol L−1, 0.12 μmol L−1 respectively, and the limits of detection (LOD) of CCD achieved 0.58 μmol L−1 and 0.39 μmol L−1 for K+ and Na+ respectively.  相似文献   

14.
A new simultaneous derivatization and extraction method for the preconcentration of ammonia using new one-step headspace dynamic in-syringe liquid-phase microextraction with in situ derivatization was developed for the trace determination of ammonium in aqueous samples by liquid chromatography with fluorescence detection (LC–FLD). The acceptor phase (as derivatization reagent) containing o-phthaldehyde and sodium sulfite was held within a syringe barrel and immersed in the headspace of sample container. The gaseous ammonia from the alkalized aqueous sample formed a stable isoindole derivative with the acceptor phase inside the syringe barrel through the reciprocated movements of plunger. After derivatization-cum-extraction, the acceptor phase was directly injected into LC–FLD for analysis. Parameters affecting the ammonia evolution and the extraction/derivatization efficiency such as sample matrix, pH, temperature, sampling time, and the composition of derivatization reagent, reaction temperature, and frequency of reciprocated plunger, were studied thoroughly. Results indicated that the maximum extraction efficiency was obtained by using 100 μL derivatization reagent in a 1-mL gastight syringe under 8 reciprocated movements of plunger per min to extract ammonia evolved from a 20 mL alkalized aqueous solution at 70 °C (preheated 4 min) with 380 rpm stirring for 8 min. The detection was linear in the concentration range of 0.625–10 μM with the correlation coefficient of 0.9967 and detection limit of 0.33 μM (5.6 ng mL−1) based on S N−1 = 3. The method was applied successfully to determine ammonium in real water samples without any prior cleanup of the samples, and has been proved to be a simple, sensitive, efficient and cost-effective procedure for trace ammonium determination in aqueous samples.  相似文献   

15.
A facile, sensitive and universal method was established for analysis of biogenic amines using micellar electrokinetic chromatography coupled with chemiluminescent (CL) detection. It was found that diperiodatocuprate (III) (K5[Cu(HIO6)2], DPC), a transition metal chelate at unstable high oxidation state, could effectively enhance the reaction between luminol-type compound and hydrogen peroxide, to produce very strong CL signal. In addition, triethylamine was found to be able to effectively improve the yield of the derivatization reaction between biogenic amines and a luminol-type derivatization reagent, N-(4-aminobutyl)-N-ethylisoluminol (ABEI). Based on these facts, three biogenic amines were pre-column derivatized with ABEI, and post-column detected using high sensitive luminol-hydrogen peroxide-DPC CL system. Since the background was quite low, and the signal was quite strong, a considerable improved sensitivity was obtained. The presented method had been successfully applied to simultaneously analyze glycine, proline and phenylalanine with the detection limits (S/N = 3) of 0.030 μmol L−1, 0.23 μmol L−1 and 0.21 μmol L−1, respectively. To evaluate its potential application value, glycine in saliva and urine samples was detected using this method, and satisfied results were obtained. This approach can be further extended to detection of many other compounds such as peptides and drugs by using luminol-type derivatization reagent.  相似文献   

16.
A new procedure for determination of biogenic amines (BA): histamine, phenethylamine, tyramine and tryptamine, based on the derivatization reaction with 2-chloro-1,3-dinitro-5-(trifluoromethyl)-benzene (CNBF), is proposed. The amines derivatives with CNBF were isolated and characterized by X-ray crystallography and 1H, 13C, 19F NMR spectroscopy in solution. The novelty of the procedure is based on the pure and well-characterized products of the amines derivatization reaction. The method was applied for the simultaneous analysis of the above mentioned biogenic amines in wine samples by the reversed phase-high performance liquid chromatography. The procedure revealed correlation coefficients (R2) between 0.9997 and 0.9999, and linear range: 0.10–9.00 mg L−1 (histamine); 0.10–9.36 mg L-1 (tyramine); 0.09–8.64 mg L−1 (tryptamine) and 0.10–8.64 mg L−1 (phenethylamine), whereas accuracy was 97%–102% (recovery test). Detection limit of biogenic amines in wine samples was 0.02–0.03 mg L−1, whereas quantification limit ranged 0.05–0.10 mg L−1. The variation coefficients for the analyzed amines ranged between 0.49% and 3.92%. Obtained BA derivatives enhanced separation the analytes on chromatograms due to the inhibition of hydrolysis reaction and the reduction of by-products formation.  相似文献   

17.
The interaction between colloidal AgTiO2 nanoparticles and bovine serum albumin (BSA) was studied by using absorption, steady state, time resolved and synchronous fluorescence spectroscopy measurements. Absorption spectroscopy proved the formation of a ground state BSA?AgTiO2 complex. Upon excitation of BSA, colloidal AgTiO2 nanoparticles effectively quenched the intrinsic fluorescence of BSA. The number of binding sites (n = 1.06) and apparent binding constant (K = 3.71 × 105 M−1) were calculated by the fluorescence quenching method. A static mechanism and conformational changes of BSA were observed.  相似文献   

18.
Zhang Y  Zeng GM  Tang L  Niu CG  Pang Y  Chen LJ  Feng CL  Huang GH 《Talanta》2010,83(1):210-215
Picloram is a widely used chlorinated herbicide, which is quite persistent and mobile in soil and water with adverse health and environmental risks. A simple and efficient method with high sensitivity and good selectivity was developed in this work to analyze picloram. The aldehyde group functionalized quartz glass plate was used to catch picloram by Schiff base reaction, and reacted with the liposomes-labeled antibody. The fluorescein isothiocyanate (FITC) solution was encapsulated in the liposomes. After being released from the liposomes, the fluorescence of FITC was measured by a fluorimeter. It was found that the fluorescence intensity is linearly correlated to the logarithm of picloram concentration, ranging from 1.0 × 10−4 to 100 ng mL−1, with a detection limit of 1.0 × 10−5 ng mL−1. Picloram concentration in real wastewater samples were accurately measured by the proposed method and HPLC, the results of the two methods were approximately the same. The proposed method showed high sensitivity and good selectivity, and could be an efficient tool for picloram quantitative analysis.  相似文献   

19.
A BODIPY-based fluorescent derivatization reagent with a hydrazine moiety, 1,3,5,7-tetramethyl-8-aminozide-difluoroboradiaza-s-indacene (BODIPY-aminozide), has been designed for aldehyde labeling. An increased fluorescence quantum yield was observed from 0.38 to 0.94 in acetonitrile when it reacted with aldehydes. Twelve aliphatic aldehydes from formaldehyde to lauraldehyde were used to evaluate the analytical potential of this reagent by high performance liquid chromatography (HPLC) on C18 column with fluorescence detection. The derivatization reaction of BODIPY-aminozide with aldehydes proceeded at 60 °C for 30 min to form stable corresponding BODIPY hydrazone derivatives in the presence of phosphoric acid as a catalyst. The maximum excitation (495 nm) and emission (505 nm) wavelengths were almost the same for all the aldehyde derivatives. A baseline separation of all the 12 aliphatic aldehydes (except formaldehyde and acetaldehyde) is achieved in 20 min with acetonitrile–tetrahydrofuran (THF)–water as mobile phase. The detection limits were obtained in the range from 0.43 to 0.69 nM (signal-to-noise = 3), which are better than or comparable with those obtained by the existing methods based on aldehyde labeling. This reagent has been applied to the precolumn derivatization followed with HPLC determination of trace aliphatic aldehydes in human serum samples without complex pretreatment or enrichment method.  相似文献   

20.
A method was developed for the analysis of four aliphatic diamines by capillary zone electrophoresis using pre-column derivatization with naphthalene-2,3-dicarboxaldehyde (NDA)/CN and amperometric detection. The pre-column derivatization reaction conditions including the molar ratio of NDA to amines, the cyanide concentration, the pH value of derivatization buffer, and the reaction time, were investigated. The separation of four derivatives of aliphatic diamines has been optimized by capillary zone electrophoresis (CZE) using end-column amperometric detection with a carbon fiber microelectrode, at a constant potential of 0.7 V versus SCE. The optimum conditions for the separation were 10 mM Tris-H3PO4 (pH 4.0) for the running buffer solution, 15 kV for the separation voltage. The detection limits for diaminopropane, putrescine, cadaverine, diaminohexane were 6.7×10−8, 5.1×10−8, 1.9×10−7 and 3.8×10−7 M, respectively (S/N=3). The proposed method was applied to the determination of aliphatic diamines in a lake water sample by the standard addition method. The recovery of these amines in water was 89.9-107%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号