首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although more than 20 years have passed, the identification of the superconducting order parameter in cuprates is still under debate. Here, we show that the gap size near the nodes is a good candidate for the order parameter: it scales with the critical temperature Tc over a wide doping range and displays a significant temperature dependence below Tc in both the underdoped and the overdoped regimes. In contrast, the gap size at the antinodes does not scale with Tc in the underdoped regime and appears to be controlled by the pseudogap which persists below Tc.  相似文献   

2.
We performed high-resolution angle-resolved photoemission spectroscopy on La1.85Sr0.15CuO4 to study the nature of the single-particle excitation gap. We found that there is a well-defined superconducting coherence peak in the off-nodal region while it is strongly suppressed around the antinode. The momentum dependence of the single-particle excitation gap shows a striking deviation from the dx-y2--wave symmetry with anomalous enhancement around the antinode in both the superconducting and the pseudogap state. The observed close correlation between the superconducting coherence peak and the pseudogap suggests a substantial contribution of the pseudogap to the anomalous behavior of the gap in the superconducting state.  相似文献   

3.
We use angle-resolved photoemission spectroscopy to investigate the energy gap(s) in (Bi,Pb)2(Sr,La)2CuO6+delta. We find that the spectral gap has two components in the superconducting state: a superconducting gap and pseudogap. Differences in their momentum and temperature dependence suggest that they represent two separate energy scales. Spectra near the node reveal a sharp peak with a small gap below T(c) that closes at T(c). Near the antinode, spectra are broad with a large energy gap of approximately 40 meV above and below T(c). The latter spectral shape and gap magnitude are almost constant across T(c), indicating that the pseudogap state coexists with the superconducting state below T(c), and it dominates spectra around the antinode. We speculate that the pseudogap state competes with the superconductivity by diminishing spectral weight in antinodal regions, where the superconducting gap is largest.  相似文献   

4.
Tunneling spectroscopy using a very thin stack of intrinsic Josephson junctions has revealed that the superconducting gap is definitely different from the pseudogap in the Bi(2)Sr(2)CaCu(2)O(8+delta) system. In the underdoped region, the conductance peak arising from the superconducting gap is independently observed in the dI/dV-V curve and its position is much lower than that of the pseudogap. Near the optimum doping level and in the overdoped region, both peaks are located in close proximity. These findings are in conflict with a previous understanding of the pseudogap.  相似文献   

5.
许祝安 《物理》2006,35(5):432-437
高温超导体赝隙态与超导态之间的关系一直是研究的焦点.交流电导和能斯特(Nernst)效应测量相继探测到超导转变温度Tc0以上温区一定范围内存在磁通涡旋激发,利用力矩技术的磁化率测量则探测到超导涨落引起的弱抗磁性.这些发现都支持了高温超导体赝隙相中存在有限的超导序参量振幅和强烈的位相涨落的图像,说明Tc0处的相变是由库珀对之间长程位相关联的消失所驱动的.文章首先简短地介绍高温超导体的电子态相图和赝隙态,以及能斯特效应的原理和测量方法,然后对能斯特效应的测量结果作一评述性介绍,还讨论了相关的理论模型.  相似文献   

6.
We use inelastic neutron scattering to probe magnetic excitations of an optimally electron-doped superconductor Nd1.85Ce0.15CuO4-delta above and below its superconducting transition temperature Tc=25 K. In addition to gradually opening a spin pseudogap at the antiferromagnetic ordering wave vector Q=(1/2,1/2,0), the effect of superconductivity is to form a resonance centered also at Q=(1/2,1/2,0) but at energies above the spin pseudogap. The intensity of the resonance develops like a superconducting order parameter, similar to those for hole-doped superconductors and electron-doped Pr0.88LaCe0.12CuO4. The resonance is therefore a general phenomenon of cuprate superconductors, and must be fundamental to the mechanism of high-Tc superconductivity.  相似文献   

7.
Results for pseudogaps are obtained from a band model, where the stability of the gap depends on the amplitudes of vibrational displacements, or magnetic moments, and their coupling to electrons. A one-particle gap is favored by normal thermal excitations of phonons or spin waves. Another gap can be generated by spontaneous waves at lower temperature, if the electronic energy gain overcomes the elastic/magnetic energy needed for increased amplitudes of the oscillations. This state is characterized by charge or spin density waves. The pseudogap has many features in common with the superconducting gap, and the model lends support to the interpretation that the pseudogap is a precursor of, and competes with, superconducting pairing.  相似文献   

8.
We report the ultrafast optical response of quasiparticles (QPs) in both the pseudogap (PG) and superconducting (SC) states of an underdoped Bi2Sr2CaCu2O8 + y (Bi2212) single crystal measured with the time-resolved pump-probe technique. At a probe energy variant planck's over omegapr = 1.55 eV, it is found that the reflectivity change DeltaR/R changes its sign at exactly Tc, which allows the direct separation of the charge dynamics of PG and SC QPs. Further systematic investigations indicate that the transient signals associated with PG and SC QPs depend on the probe beam energy and polarization. By tuning them below Tc, two distinct components can be detected simultaneously, providing evidence for the coexistence of PG and SC QPs.  相似文献   

9.
Conductance spectra measurements of highly transparent junctions made of superconducting La2-xSrxCuO4 electrodes and a nonsuperconducting La1.65Sr0.35CuO4 barrier are reported. At low temperatures below Tc, these junctions have two prominent Andreev-like conductance peaks with clear steps at energies Δ1 and Δ2 with Δ2>2Δ1. No such peaks appear above Tc. The doping dependence at 2 K shows that both Δ1 and Δ2 scale roughly as Tc. Δ1 is identified as the superconducting energy gap, while a few scenarios are proposed as for the origin of Δ2.  相似文献   

10.
Yu Lan  Jihong Qin  Shiping Feng 《Physics letters. A》2013,377(34-36):2210-2215
The interplay between the superconducting gap and normal-state pseudogap in the bilayer cuprate superconductors is studied based on the kinetic energy driven superconducting mechanism. It is shown that the charge carrier interaction directly from the interlayer coherent hopping in the kinetic energy by exchanging spin excitations does not provide the contribution to the normal-state pseudogap in the particle–hole channel and superconducting gap in the particle–particle channel, while only the charge carrier interaction directly from the intralayer hopping in the kinetic energy by exchanging spin excitations induces the normal-state pseudogap in the particle–hole channel and superconducting gap in the particle–particle channel, and then the two-gap behavior is a universal feature for the single layer and bilayer cuprate superconductors.  相似文献   

11.
Intrinsic tunneling spectroscopy in high magnetic field (H) is used for a direct test of superconducting features in the quasiparticle density of states of pure Bi2212 and intercalated HgBr2-Bi2212 high- T(c) superconductors. We were able to distinguish with great clarity two coexisting gaps: (i) the superconducting gap, which closes as H-->H(c2)(T), and (ii) the c-axis pseudogap, which does not change either with H or with T. Strikingly different H dependencies, together with previously observed different temperature dependencies of the two gaps, speak against a superconducting origin of the pseudogap.  相似文献   

12.
High-resolution photoemission study of MgB2   总被引:1,自引:0,他引:1  
We have performed high-resolution photoemission spectroscopy on MgB2 and observed opening of a superconducting gap with a narrow coherent peak. We found that the superconducting gap is s like with the gap value ( Delta) of 4.5+/-0.3 meV at 15 K. The temperature dependence (15-40 K) of the gap value follows well the BCS form, suggesting that 2Delta/k(B)T(c) at T = 0 is about 3. No pseudogap behavior is observed in the normal state. The present results strongly suggest that MgB2 is categorized into a phonon-mediated BCS superconductor in the weak-coupling regime.  相似文献   

13.
Superconducting metal dichalcogenides (MDCs) present several similarities to the other layered superconductors like cuprates. The superconductivity in atomically thin MDCs has been demonstrated by recent experiments, however, the investigation of the superconductivity intertwined with other orders are scarce. Investigating the pseudogap in atomic layers of MDCs may help to understand the superconducting mechanism for these true two-dimensional (2D) superconducting systems. Herein we report a pseudogap opening in the tunneling spectra of thin layers of SnSe2 epitaxially grown on highly oriented pyrolytic graphite (HOPG) with scanning tunneling microscopy/spectroscopy (STM/STS). A significant V-shaped pseudogap was observed to open near the Fermi level (EF) in the STS. And at elevated temperatures, the gap gradually evolves to a shallow dip. Our experimental observations provide direct evidence of a pseudogap state in the electron-doped SnSe2 atomic layers on the HOPG surface, which may stimulate further exploration of the mechanism of superconductivity at 2D limit in MDCs.  相似文献   

14.
Using scanning tunneling spectroscopy, we investigated the temperature dependence of the quasiparticle density of states of overdoped Bi(2)Sr(2)CuO(6+delta) between 275 mK and 82 K. Below T(c) = 10 K, the spectra show a gap with well-defined coherence peaks at +/-Delta(p) approximately 12 meV, which disappear at T(c). Above T(c), the spectra display a clear pseudogap of the same magnitude, gradually filling up and vanishing at T(*) approximately 68 K. The comparison with Bi(2)Sr(2)CaCu(2)O(8+delta) demonstrates that the pseudogap and the superconducting gap scale with each other, providing strong evidence that they have a common origin.  相似文献   

15.
曹天德 《中国物理 B》2010,19(11):117402-117402
This paper deduces that the particular electronic structure of cuprate superconductors confines Cooper pairs to be first formed in the antinodal region which is far from the Fermi surface,and these pairs are incoherent and result in the pseudogap state.With the change of doping or temperature,some pairs are formed in the nodal region which locates the Fermi surface,and these pairs are coherent and lead to superconductivity.Thus the coexistence of the pseudogap and the superconducting gap is explained when the two kinds of gaps are not all on the Fermi surface.It also shows that the symmetry of the pseudogap and the superconducting gap are determined by the electronic structure,and non-s wave symmetry gap favours the high-temperature superconductivity.Why the high-temperature superconductivity occurs in the metal region near the Mott metal-insulator transition is also explained.  相似文献   

16.
Scanning tunneling spectroscopy at very low temperatures on homogeneously disordered superconducting titanium nitride thin films reveals strong spatial inhomogeneities of the superconducting gap Delta in the density of states. Upon increasing disorder, we observe suppression of the superconducting critical temperature Tc towards zero, enhancement of spatial fluctuations in Delta, and growth of the Delta/Tc ratio. These findings suggest that local superconductivity survives across the disorder-driven superconductor-insulator transition.  相似文献   

17.
The degree to which the interpretation of the existence of a pseudogap and a superconducting gap in cuprates on the basis t-t′-U the Hubbard-model corresponds to the data obtained from the photoemission spectra is discussed. The pseudogap in the model is interpreted as the work function of electrons from the insulating parts of the Brillouin zone boundary. On this basis one can explain the angle dependence of the gap measured in the photoemission spectra and its evolution on changes in doping and temperature. In particular, an explanation is found for the decline in the ratio of the angle derivative of the gap near the site, v Δ = (1/2)dΔ(?)/d?, to the maximum value of the gap, Δmax, with decreasing doping. That behavior and the different temperature dependence of the gap Δ(?) for different angles are due to the presence of two contributions to Δ with different anisotropies—from the pseudogap and from the superconducting gap. The calculation of the spectral functions confirms the sharp Fermi boundary observed in the direction and the smeared edge of the distribution along the path Γ(0, 0)-M(π, 0)-Y(π, π).  相似文献   

18.
We report neutron scattering studies on two single crystal samples of the electron-doped (n-type) superconducting (SC) cuprate Nd2-xCexCuO4 (x=0.15) with T(c)=18 and 25 K. Unlike the hole-doped (p-type) SC cuprates, where incommensurate magnetic fluctuations commonly exist, the n-type cuprate shows commensurate magnetic fluctuations at the tetragonal (1/2 1/2 0) reciprocal points both in the SC and in the normal state. A spin gap opens up when the n-type cuprate becomes SC, as in the optimally doped p-type La2-xSrxCuO4. The gap energy, however, increases gradually up to about 4 meV as T decreases from T(c) to 2 K, which contrasts with the spin pseudogap behavior with a T-independent gap energy in the SC state of p-type cuprates.  相似文献   

19.
The influence of pseudogap on the inelastic neutron scattering spectra of the underdoped lanthanum cuprate is studied on the basis of the model which incorporates both the superconducting state and pseudogap state.It is found that the striking effects of the influence of the pseudogap on the incommensurability of the spin excitation spectrum are that in the superconducting state the pseudogap makes the intensity of the incommensurate peak increase,in the normal state the pseudogap not only makes the intensity of the incommensurate peak increase,but also sharpens the incommensurate peak and increases incommensurability.  相似文献   

20.
We present broadband infrared ellipsometry measurements of the c-axis conductivity of underdoped RBa_{2}Cu_{3}O_{7-delta} (R=Y, Nd, and La) single crystals. Our data show that separate energy scales are underlying the redistributions of spectral weight due to the normal state pseudogap and the superconducting gap. Furthermore, they provide evidence that these gaps do not share the same electronic states and do not merge on the overdoped side. Accordingly, our data are suggestive of a two gap scenario with a pseudogap that is likely extrinsic with respect to superconductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号