首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
根据原电子的射程与入射能量和能量幂次的关系,用ESTAR程序分别计算出高能原电子对铝射程的能量幂次约为1.72,对金射程的能量幂次约为1.62。分别根据高能原电子对铝和金的射程与入射能量的关系,用实验数据计算出常数其能量幂次,然后分别推导了高能原电子对铝的射程的表达式和对金的射程的表达式。用推导出的表达式分别计算出一些高能原电子对铝和金的射程计算值,与现有实验值相符较好。  相似文献   

2.
根据原电子射程表达式和金属的有效真二次电子发射系数表达式,推导出金属的高能有效真二次电子发射系数与入射能量、能量幂次的关系式;并根据金属的高能有效真二次电子发射系数与金属的高能二次电子发射系数的关系,推导出金属的高能二次电子发射系数与入射能量、能量幂次的关系式。用实验数据计算出高能原电子轰击在金或银上时原电子入射能量幂次n,采用实验数据证实高能二次电子发射系数与原电子入射能量和能量幂次三者的关系,对结果进行讨论并得出结论:当高能原电子轰击在同一块金属上时,高能二次电子发射系数与原电子入射能量的n-1次幂之积近似为一常数。  相似文献   

3.
 根据原电子射程表达式和金属的有效真二次电子发射系数表达式,推导出金属的高能有效真二次电子发射系数与入射能量、能量幂次的关系式;并根据金属的高能有效真二次电子发射系数与金属的高能二次电子发射系数的关系,推导出金属的高能二次电子发射系数与入射能量、能量幂次的关系式。用实验数据计算出高能原电子轰击在金或银上时原电子入射能量幂次n,采用实验数据证实高能二次电子发射系数与原电子入射能量和能量幂次三者的关系,对结果进行讨论并得出结论:当高能原电子轰击在同一块金属上时,高能二次电子发射系数与原电子入射能量的n-1次幂之积近似为一常数。  相似文献   

4.
5.
6.
通过第一性原理计算得到了稳定的(AlH3)n的笼形结构.(AlH3)n笼形结构中的铝团簇骨架具有n个顶角,2n条Al-Al边,吸附的氢原子中有n个位于顶位,与Al原子形成共价键,2n个位于桥位,同铝原子一起构成了Al-H-Al 的笼形骨架. 以Al12H36的笼形结构为单元得到了(Al12H36)n的链状结构,该链状结构与(AlH3)n的链状结构具有相同的链接方式. 同时Al12H36的热力学性质研究表明其可能成为一种高能密材料.  相似文献   

7.
本工作将代数重建算法应用于新兴发展的高能电子成像技术开展三维成像研究,实现对样品靶物质内部结构信息的精确诊断.通过蒙特卡罗程序及粒子追踪程序模拟高能电子成像过程,包括电子束与靶物质相互作用过程,获得样品靶物质成像角度下的高能电子二维成像结果.利用代数迭代重建ART(Algebraic Re-construction T...  相似文献   

8.
双光束对高能电子的捕获特性   总被引:1,自引:0,他引:1       下载免费PDF全文
为了在实验上增强非线性强场效应的信号强度,基于电子在强激光束上的非弹性散射,提出一种双光束捕获电子的方案,目的是通过延长电子和强场相互作用时间来提高非线性过程发生总概率,实现观测信号的增强。数值模拟结果表明,捕获后的电子和强激光场的相互作用时间可延长10倍以上。  相似文献   

9.
树华 《物理》2006,35(10):864-864
美国Lawrence Livermore实验室的科学家利用强激光将一小块金靶转换成由电子和正离子组成的等离子体.在金样品分飞之前的瞬间,物理学家记录到一些令人惊讶的结果.最重要的发现是:即使在高能量密度(10^7焦耳/千克)的极端条件下,金仍然保持所有金属所展示的能带结构一所容许的电子能量不是连续的而是处于一定的容许的能带中.  相似文献   

10.
从力学运动公式出发,假设运动员抛出物体时输出能量固定,应用能量守恒定律研究以一定高度和角度抛出物体的运动规律,详细定量分析运动员输出能量、肩膀高度和手臂长度对抛射速度、最佳抛射角和最大射程的影响。研究表明,对铅球成绩影响最大的是抛射速度和抛射角,而50厘米的肩膀高度或手臂长度差别对铅球成绩的影响分别为分米和厘米量级。另外,理论计算结果与三名铅球运动员实际投掷数据的比较说明理论计算结果的可靠性高,研究结果对投掷类运动具有一定指导和借鉴意义。  相似文献   

11.
高入射能量下的金属二次电子发射模型   总被引:2,自引:0,他引:2       下载免费PDF全文
杨文晋  李永东  刘纯亮 《物理学报》2013,62(8):87901-087901
基于高入射能量电子产生二次电子发射的物理过程, 分别对高入射能量电子产生的真二次电子和背散射电子的概率进行理论分析与建模. 利用Bethe能量损失模型和内二次电子逸出概率分布, 推导出高入射能量电子产生有效真二次电子发射的系数与入射能量的关系式; 根据高入射能量电子在材料内部被吸收的规律, 推导出高入射能量电子产生背散射电子的系数与入射能量之间的关系式. 结合两者得到高入射能量下金属的二次电子发射模型. 利用该模型计算得到典型金属材料Au, Ag, Cu, Al的二次电子发射系数, 理论计算结果与采用Casino软件模拟金属内部散射过程得到的数值模拟结果相符. 关键词: 二次电子发射 高入射能量 金属表面 散射过程  相似文献   

12.
提出有效真二次电子发射系数的概念,并从理论上论述了高能原电子的能量与金属的有效真二次电子发射系数的关系,然后用实验数据证明了该理论的正确性,最后对结果进行了讨论。得到了如下结论:不同入射能量的高能原电子轰击同一个金属发射体时, 它们的有效真二次电子发射系数与高能原电子入射能量之积近似为一个常量,有效真二次电子发射系数与高能原电子入射能量成反比。  相似文献   

13.
 提出有效真二次电子发射系数的概念,并从理论上论述了高能原电子的能量与金属的有效真二次电子发射系数的关系,然后用实验数据证明了该理论的正确性,最后对结果进行了讨论。得到了如下结论:不同入射能量的高能原电子轰击同一个金属发射体时, 它们的有效真二次电子发射系数与高能原电子入射能量之积近似为一个常量,有效真二次电子发射系数与高能原电子入射能量成反比。  相似文献   

14.
理论分析了收集极中运动电子的失能机制和电子能量对电子束能量沉积的影响, 用蒙特卡罗方法计算了不同能量下入射电子的能量沉积分布, 分析了电子能量对电子束在收集极中能量沉积的影响, 并据此提出了提高收集极耐电子束轰击能力的两种途径。结果表明:激发和电离是收集极中入射电子的主要失能机制;电子的能量越高, 在材料中的穿透能力越强, 收集极中被收集电子束的最大能量沉积密度越低。综合考虑束流密度分布对能量沉积的影响, 可通过两种途径来提高收集极耐电子束轰击的能力:一是通过结构设计增大电子束的收集面积, 减小收集极上被收集电子束的束流密度;二是设计高阻抗器件, 增大被收集电子束的电子能量, 减小收集极上被收集电子束的束流密度。  相似文献   

15.
1 Introduction  Theresearchontheelectronresidualenergyofionizationofatomsandmoleculesintheintenselaserfieldhasnotonlysignificancefortestingandimprovingthecurrenttheoryofionizationbutalsowideapplicationforeground .Sopeopleaffordmuchontheresearchoftheor…  相似文献   

16.
Gold nanoflowers were obtained by reducing chloroauric acid with tri-sodium citrate at a temperature of 95 °C. The UV-vis spectroscopy and scanning electron microscopy techniques were employed to monitor the growth of gold nanoflowers. The size and shape of the nanocrystallites of gold in the flowers were determined by X-ray diffraction and transmission electron microscopy methods. The 3-dimensional gold nanoflowers got fragmented into 2-dimensional petal-like nanostructures upon irradiation with 6-MeV electrons. The average size of crystallites of gold after electron beam irradiation was found to be ∼10 nm.  相似文献   

17.
用Nd:YAG脉冲激光器产生的1.064 μm激光,在空气环境下作用于金属Al诱导产生等离子体,获得了不同能量以及多次脉冲烧蚀下的Al等离子体发射光谱,分析了谱线强度与能量变化之间的关系,实验结果表明:随激光能量的增加,谱线的信号强度明显增强;对等离子体光谱进行Lorentz线型拟合,获取了谱线的半高宽,以此来计算电子密度,得到了电子密度及信号强度随多脉冲强激光诱导次数的增加而逐渐下降的演化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号