首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pd(OAc)(2)/pyridine catalyst system is one of the most convenient and versatile catalyst systems for selective aerobic oxidation of organic substrates. This report describes the catalytic mechanism of Pd(OAc)(2)/pyridine-mediated oxidation of benzyl alcohol, which has been studied by gas-uptake kinetic methods and (1)H NMR spectroscopy. The data reveal that turnover-limiting substrate oxidation by palladium(II) proceeds by a four-step pathway involving (1) formation of an adduct between the alcohol substrate and the square-planar palladium(II) complex, (2) proton-coupled ligand substitution to generate a palladium-alkoxide species, (3) reversible dissociation of pyridine from palladium(II) to create a three-coordinate intermediate, and (4) irreversible beta-hydride elimination to produce benzaldehyde. The catalyst resting state, characterized by (1)H NMR spectroscopy, consists of an equilibrium mixture of (py)(2)Pd(OAc)(2), 1, and the alcohol adduct of this complex, 1xRCH(2)OH. These in situ spectroscopic data provide direct support for the mechanism proposed from kinetic studies. The catalyst displays higher turnover frequency at lower catalyst loading, as revealed by a nonlinear dependence of the rate on [catalyst]. This phenomenon arises from a competition between forward and reverse reaction steps that exhibit unimolecular and bimolecular dependences on [catalyst]. Finally, overoxidation of benzyl alcohol to benzoic acid, even at low levels, contributes to catalyst deactivation by formation of a less active palladium benzoate complex.  相似文献   

2.
The experimental and computational mechanistic details of the Pd(OAc)(2)/TEA-catalyzed aerobic alcohol oxidation system are disclosed. Measurement of various kinetic isotope effects and the activation parameters as well as rate law derivation support rate-limiting deprotonation of the palladium-coordinated alcohol. Rate-limiting deprotonation of the alcohol is contrary to the majority of related kinetic studies for Pd-catalyzed aerobic oxidation of alcohols, which propose rate-limiting beta-hydride elimination. This difference in the rate-limiting step is supported by the computational model, which predicts the activation energy for deprotonation is 3 kcal/mol higher than the activation energy for beta-hydride elimination. The computational features of the similar Pd(OAc)(2)/pyridine system were also elucidated. Details of the study illustrate that the use of TEA results in an active catalyst that has only one ligand bound to the Pd, resulting in a significant lowering of the activation energy for beta-hydride elimination and, therefore, a catalyst that is active at room temperature.  相似文献   

3.
A kinetic investigation into the origin of enantioselectivity for the Pd[(-)-sparteine]Cl(2)-catalyzed aerobic oxidative kinetic resolution (OKR) is reported. A mechanism to account for a newly discovered chloride dissociation from Pd[(-)-sparteine]Cl(2) prior to alcohol binding is proposed. The mechanism includes (1) chloride dissociation from Pd[(-)-sparteine]Cl(2) to form cationic Pd(-)-sparteine]Cl, (2) alcohol binding, (3) deprotonation of Pd-bound alcohol to form a Pd-alkoxide, and (4) beta-hydride elimination of Pd-alkoxide to form ketone product and a Pd-hydride. Utilizing the addition of (-)-sparteine HCl to control the [Cl(-)] and [H(+)] and the resulting derived rate law, the key microscopic kinetic and thermodynamic constants were extracted for each enantiomer of sec-phenethyl alcohol. These constants allow for the successful simulation of the oxidation rate in the presence of exogenous (-)-sparteine HCl. A rate law for oxidation of the racemic alcohol was derived that allows for the successful prediction of the experimentally measured k(rel) values when using the extracted constants. Besides a factor of 10 difference between the relative rates of beta-hydride elimination for the enantiomers, the main enhancement in enantiodetermination results from a concentration effect of (-)-sparteine HCl and the relative rates of reprotonation of the diastereomeric Pd-alkoxides.  相似文献   

4.
The mechanistic details of the Pd(II)/(-)-sparteine-catalyzed aerobic oxidative kinetic resolution of secondary alcohols were elucidated, and the origin of asymmetric induction was determined. Saturation kinetics were observed for rate dependence on [(-)-sparteine]. First-order rate dependencies were observed for both the Pd((-)-sparteine)Cl(2) concentration and the alcohol concentration at high and low [(-)-sparteine]. The oxidation rate was inhibited by addition of (-)-sparteine HCl. At low [(-)-sparteine], Pd-alkoxide formation is proposed to be rate limiting, while at high [(-)-sparteine], beta-hydride elimination is proposed to be rate determining. These conclusions are consistent with the measured kinetic isotope effect of k(H)/k(D) = 1.31 +/- 0.04 and a Hammett rho value of -1.41 +/- 0.15 at high [(-)-sparteine]. Calculated activation parameters agree with the change in the rate-limiting step by increasing [(-)-sparteine] with DeltaH(++) = 11.55 +/- 0.65 kcal/mol, DeltaS(++) = -24.5 +/- 2.0 eu at low [(-)-sparteine], and DeltaH(++) = 20.25 +/- 0.89 kcal/mol, DeltaS() = -5.4 +/- 2.7 eu at high [(-)-sparteine]. At high [(-)-sparteine], the selectivity is influenced by both a thermodynamic difference in the stability of the diastereomeric Pd-alkoxides formed and a kinetic beta-hydride elimination to maximize asymmetric induction. At low [(-)-sparteine], the selectivity is influenced by kinetic deprotonation, resulting in lower k(rel) values. A key, nonintuitive discovery is that (-)-sparteine plays a dual role in this oxidative kinetic resolution of secondary alcohols as a chiral ligand on palladium and as an exogenous chiral base.  相似文献   

5.
Pd(OAc)(2):pyridine (1:4) is an efficient catalyst system for the oxidation of alcohols with molecular oxygen. A mechanistic study of this reaction reveals that pyridine promotes the aerobic oxidation of palladium(0) but inhibits the oxidation of alcohol by palladium(II). Kinetic results reveal that turnover-limiting substrate oxidation consists of (i) formation of a palladium(II)-alkoxide, (ii) pyridine dissociation, and (iii) beta-hydride elimination. These results provide a framework for the design and/or screening of more effective aerobic oxidation catalysts.  相似文献   

6.
Quantum mechanics (B3LYP density functional theory) combined with solvation (Poisson-Boltzmann polarizable continuum solvent model) was used to investigate six mechanisms for the aerobic oxidation of alcohols catalyzed by (NHC)Pd(carboxylate)(2)(H(2)O) complexes (NHC = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene). Of these, we find that "reductive beta-hydride elimination", in which the beta-hydrogen of a palladium-bound alkoxide is transferred directly to the free oxygen of the bound carboxylate, provides the lowest-energy route and explains the published kinetic isotope effect, activation enthalpy, reaction orders, and dependence of rate on carboxylate pK(a). The traditional beta-hydride elimination mechanism cannot be responsible for the experimentally observed kinetic parameters, which we find could result from the subsequent reductive elimination of acetic acid, which yields a slightly higher calculated activation barrier. Reversible beta-hydride elimination may provide a mechanism for the racemization of chiral alcohols, which would undermine attempts at an enantioselective oxidation. Competition among these pathways can be influenced by changing the electronic properties of the carboxylate and substrate.  相似文献   

7.
A zwitterionic palladium complex [[Ph(2)BP(2)]Pd(THF)(2)][OTf] (1) (where [Ph(2)BP(2)] = [Ph(2)B(CH(2)PPh(2))(2)](-)) reacts with trialkylamines to activate a C-H bond adjacent to the amine N atom, thereby producing iminium adduct complexes [Ph(2)BP(2)]Pd(N,C:eta(2)-NR(2)CHR'). In all cases examined the amine activation process is selective for the secondary C-H bond position adjacent to the N atom. These palladacycles undergo facile beta-hydride elimination/olefin reinsertion processes as evident from deuterium scrambling studies and chemical trap studies. The kinetics of the amine activation process was explored, and beta-hydride elimination appears to be the rate-limiting step. A large kinetic deuterium isotope effect for the amine activation process is evident. The reaction profile in less polar solvents such as benzene and toluene is different at room temperature and leads to dimeric [[Ph(2)BP(2)]Pd](2) (4) as the dominant palladium product. Low-temperature toluene-d(8) experiments proceed more cleanly, and intermediates assigned as [Ph(2)BP(2)]Pd(NEt(3))(OTf) and the iminium hydride species [[Ph(2)BP(2)]Pd(H)(Et(2)N=CHCH(3))][OTf] are directly observed. The complex (Ph(2)SiP(2))Pd(OTf)(2) (14) was also studied for amine activation and generates dimeric [(Ph(2)SiP(2))Pd](2)[OTf](2) (16) as the dominant palladium product. These collective data are discussed with respect to the mechanism of the amine activation and, in particular, the influence that solvent polarity and charge have on the overall reaction profile.  相似文献   

8.
The mechanistic details of the palladium-catalyzed aerobic oxidative kinetic resolution of secondary alcohols have been elucidated. (-)-Sparteine was found to have a dual role as a chiral ligand and an exogenous base. Saturation kinetics were observed for the dependence on (-)-sparteine concentration. A first-order dependence on [alcohol] and [catalyst] as well as inhibition by addition of (-)-sparteine HCl were observed. These results are consistent with rate-limiting deprotonation under low (-)-sparteine concentrations and rate-limiting beta-hydride elimination using saturating (-)-sparteine concentrations. This conclusion is further supported by a kinetic isotope effect of 1.31 +/- 0.04 under saturation. The enantioselectivity events are also controlled by addition of (-)-sparteine in which high concentrations afford a more selective kinetic resolution.  相似文献   

9.
[reaction: see text] Three catalysts for aerobic oxidation of alcohols are discussed and the effectiveness of each is evaluated for allylic, benzylic, aliphatic, and functionalized alcohols. Additionally, chiral nonracemic substrates as well as chemoselective and diastereoselective oxidations are investigated. In this study, the most convenient system for the Pd-catalyzed aerobic oxidation of alcohols is Pd(OAc)(2) in combination with triethylamine. This system functions effectively for the majority of alcohols tested and uses mild conditions (3 to 5 mol % of catalyst, room temperature). Pd(IiPr)(OAc)(2)(H(2)O) (1) also successfully oxidizes the majority of alcohols evaluated. This system has the advantage of significantly lowering catalyst loadings but requires higher temperatures (0.1 to 1 mol % of catalyst, 60 degrees C). A new catalyst is also disclosed, Pd(IiPr)(OPiv)(2) (2). This catalyst operates under very mild conditions (1 mol %, room temperature, and air as the O(2) source) but with a more limited substrate scope.  相似文献   

10.
Two previous mechanistic studies of the amination of aryl halides catalyzed by palladium complexes of 1,1'-binaphthalene-2,2'-diylbis(diphenylphosphine) (BINAP) are reexamined by the authors of both studies. This current work includes a detailed study of the identity of the BINAP-ligated palladium complexes present in reactions of amines with aryl halides and rate measurements of these catalytic reactions initiated with pure precatalysts and precatalysts generated in situ from [Pd2(dba)3] and BINAP. This work reveals errors in both previous studies, and we describe our current state of understanding of the mechanism of this synthetically important transformation. 31P NMR spectroscopy shows that several palladium(0) species are present in the catalytic system when the catalyst is generated in situ from [Pd2(dba)3] and BINAP, and that at least two of these complexes generate catalytic intermediates. Further, these spectroscopic studies and accompanying kinetic data demonstrate that an apparent positive order in the concentration of amine during reactions of secondary amines is best attributed to catalyst decomposition. Kinetic studies with isolated precatalysts show that the rates of the catalytic reactions are independent of the identity and the concentration of amine, and studies with catalysts generated in situ show that the rates of these reactions are independent of the concentration of amine. Further, reactions catalyzed by [Pd(BINAP)2] with added BINAP are found to be first-order in bromoarene and inverse first-order in ligand, in contrast to previous work indicating zero-order kinetics in both. These data, as well as a correlation between the decay of bromobenzene in the catalytic reaction and the predicted decay of bromobenzene from rate constants of studies on stoichiometric oxidative addition, are consistent with a catalytic process in which oxidative addition of the bromoarene occurs to [Pd(BINAP)] prior to coordination of amine and in which [Pd(BINAP)2], which generates [Pd(BINAP)] by dissociation of BINAP, lies off the cycle. By this mechanism, the amine and base react with [Pd(BINAP)(Ar)(Br)] to form an arylpalladium amido complex, and reductive elimination from this amido complex forms the arylamine.  相似文献   

11.
Indanones and 2-cyclopentenones have been successfully prepared in good to excellent yields by the palladium-catalyzed carbonylative cyclization of unsaturated aryl iodides and dienyl triflates, iodides, and bromides, respectively. The best results are obtained by employing 10 mol % of Pd(OAc)(2), 2 equiv of pyridine, 1 equiv of n-Bu(4)NCl, 1 atm of CO, a reaction temperature of 100 degrees C, and DMF as the solvent. This carbonylative cyclization is particularly effective on substrates that contain a terminal olefin. The proposed mechanism for this annulation includes (1) Pd(OAc)(2) reduction to the active palladium(0) catalyst, (2) oxidative addition of the organic halide or triflate to Pd(0), (3) coordination and insertion of carbon monoxide to produce an acylpalladium intermediate, (4) acylpalladation of the neighboring carbon-carbon double bond, (5) reversible palladium beta-hydride elimination and re-addition to form a palladium enolate, and (6) protonation by H(2)O to produce the indanone or 2-cyclopentenone.  相似文献   

12.
The reaction of molecular oxygen with a Pd(II)-hydride species to form a Pd(II)-hydroperoxide represents one of the proposed catalyst reoxidation pathways in Pd-catalyzed aerobic oxidation reactions, but well-defined examples of this reaction were discovered only recently. Here, we present a mechanistic study of the reaction of O2 with trans-(IMes) 2Pd(H)(OBz), 1 (IMes = 1,3-dimesitylimidazol-2-ylidene), which yields trans-(IMes) 2Pd(OOH)(OBz), 2. The reaction was monitored by (1)H NMR spectroscopy in benzene-d6, and kinetic studies reveal a two-term rate law, rate = k1[1] + k2[1][BzOH], and a small deuterium kinetic isotope effect, k(Pd-H)/k(Pd-D) = 1.3(1). The rate is independent of the oxygen pressure. The data support a stepwise mechanism for the conversion of 1 into 2 consisting of rate-limiting reductive elimination of BzOH from 1 followed by rapid reaction of molecular oxygen with (IMes) 2Pd(0) and protonolysis of a Pd-O bond of the eta(2)-peroxo complex (IMes) 2Pd(O2). Benzoic acid and other protic additives (H2O, ArOH) catalyze the oxygenation reaction, probably by stabilizing the transition state for reductive elimination of BzOH from 1. This study provides the first experimental validation of the mechanism traditionally proposed for aerobic oxidation of Pd-hydride species.  相似文献   

13.
Mononuclear palladium-hydroxo complexes of the type [Pd(N-N)(C6F5)(OH)][(N-N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me2bipy), or N,N,N',N'-tetramethylethylenediamine (tmeda) react with SO2(1 atm) at room temperature in alcohol (methanol, ethanol, propanol or isopropanol) to yield alkyl sulfito palladium complexes [Pd(N-N)(C6F5)(SO2OR)](R = Me, Et, Pr or iPr). Similar alkyl sulfito complexes [Pd(N-N)(C6F5)(SO2OR)](N-N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me or Et) are obtained when [Pd(N-N)(C6F5)Cl] is treated with KOH in the corresponding alcohol ROH and SO2 is bubbled through the solution. The reaction of [Pd(bipy)(C6F5)(OH)] with SO2 in tetrahydrofuran gives [Pd(N-N)(C6F5)(SO2OH)]. The X-ray diffraction study of [Pd(tmeda)(C6F5)(SO2OPr)] has established the sulfur coordination of the propyl sulfito ligand.  相似文献   

14.
The regioselectivity of styrene insertion to an acyl-Pd bond was studied by NMR in (i) a stoichiomeric reaction and (ii) a copolymerization with CO. In the stoichiometric reaction of styrene with [(CH(3)CO)Pd(CH(3)CN)[(R,S)-BINAPHOS]].[B[3,5-(CF(3))(2)C(6)H(3)](4)], both 1,2- and 2,1-products were given. To mimic the real polymerization conditions, a polyketone-substituted complex [[CH(3)(CH(2)CHCH(3)CO)(n)]Pd[(R,S)-BINAPHOS]].[B(3,5-(CF(3))(2)C(6)H(3))(4)] (n approximately 14) was prepared. When this polymer-attached Pd species was treated with styrene, the 1,2-insertion product was the only detectable species. Thus, exclusive 1,2-insertion is demonstrated to be responsible for the styrene-CO copolymerization, in sharp contrast to the predominant 2,1-insertion with conventional nitrogen ligands. Chain-end analysis revealed that beta-hydride elimination took place from the 2,1-complex but not from the 1,2-complex. Thus, once 2,1-insertion occurs, rapid beta-hydride elimination proceeds to terminate the polymerization, as is common to the other phosphorus-ligand systems. The resulting Pd-H species re-initiates the copolymerization, as was proven by MALDI-TOF mass analysis of the product copolymers.  相似文献   

15.
A theoretical study of the accessibility of hexacoordinate palladium(VI) compounds is presented. Species such as [Pd(SiR3)6], [PdCl6], and [Pd(OH)6] are predicted to be unstable toward reductive elimination of the ligands. In contrast, the presence of a stable palladium(VI) center is expected in [PdF6], a low-spin nearly octahedral molecule with a weak Jahn-Teller distortion and highly covalent Pd-F bonds. A vibrational analysis confirms such a geometry as an energy minimum, and a special distribution of its spin density makes PdF6 a highly interesting synthetic target.  相似文献   

16.
[Pd(P(Ar)(tBu)2)2] ( 1 , Ar=naphthyl) reacts with molecular oxygen to form PdII hydroxide dimers in which the naphthyl ring is cyclometalated and one equivalent of phosphine per palladium atom is released. This reaction involves the cleavage of both C H and O O bonds, two transformations central to catalytic aerobic oxidizations of hydrocarbons. Observations at low temperature suggest the initial formation of a superoxo complex, which then generates a peroxo complex prior to the C H activation step. A transition state for energetically viable C H activation across a Pd peroxo bond was located computationally.  相似文献   

17.
[Pd(P(Ar)(tBu)2)2] ( 1 , Ar=naphthyl) reacts with molecular oxygen to form PdII hydroxide dimers in which the naphthyl ring is cyclometalated and one equivalent of phosphine per palladium atom is released. This reaction involves the cleavage of both C? H and O? O bonds, two transformations central to catalytic aerobic oxidizations of hydrocarbons. Observations at low temperature suggest the initial formation of a superoxo complex, which then generates a peroxo complex prior to the C? H activation step. A transition state for energetically viable C? H activation across a Pd? peroxo bond was located computationally.  相似文献   

18.
This study examines structural features and aspects of reactivity of Gif-type reagents, which depend on O2/Zn to mediate oxidation of hydrocarbons. The reagents investigated derive from the use of iron complexes with the anion of the weak carboxylic acid Me3CCO2H (pivalic acid (PivH)) in pyridine/PivH. In these solutions, the known compound [Fe3O(O2CCMe3)6(py)3] is reduced by Zn to generate yellow-green [FeII(O2CCMe3)2(py)4], which readily reverts to [Fe3O(O2CCMe3)6(py)3], and eventually to [Fe3O(O2CCMe3)6(py)3]+, upon exposure to dioxygen. All three species are equally well suited to mediate Gif-like oxygenation of substrates supported by O2/Zn. [FeIII3O(O2CCMe3)6(L)3]+ (L = H2O, py) is converted by H2O2 to afford the hexairon(III) peroxo compounds [Fe6(O2)(O)2(O2CCMe3)12(L)2] (L = Me3CCO2H, py), which feature a [Fe6(eta 2-mu 4-O2)(mu 3-O)2] core previously documented in the closely related [Fe6(O2)(O)2(O2CPh)12(H2O)2]. A similar peroxo species, [Fe6(O2)(O)2(O2CCMe3)2(O2CCF3)10(H2O)2], is obtained upon replacing all pivalate ligands by trifluoroacetate groups with the exception of those pivalates that bridge between the two [Fe3O(O2CCF3)5(H2O)]2+ units. The structure of the [Fe6(O2)(O)2] core in these peroxo species is found to range from a recliner to a butterfly-type conformation. Reduction of [Fe6(O2)(O)2(O2CCMe3)12(HO2CCMe3)2] with NaBH4 generates [Na2Fe4(O)2(O2CCMe3)10(L)(L')] (L = CH3CN, L' = Me2CO; L = L' = Me3CCO2H), which feature a [Na2Fe4(O)2] core possessing a bent butterfly conformation of the [Fe4(O)2] unit. Oxidation of the same peroxo complex by CeIV or NOBF4 regenerates the oxo-bridged [Fe3O(O2CCMe3)6(solv)3]+ (solv = EtOH, H2O, thf). Employment of the sterically encumbered 2-Me-5-Etpyridine provides the tetrairon compound [Fe4(O)2(O2CCMe3)8(2-Me-5-Etpy)2], which can be readily transformed upon treatment with H2O2 to the asymmetric peroxo complex [Fe6(O2)(O)2(O2CCMe3)12(2-Me-5-Etpy)2]. The peroxo-containing complexes oxidize both cis-stilbene and adamantane in either benzene or py/PivH, but only under forceful conditions and at very low yields. The low reactivity and high selectivity (tert/sec = 8) obtained in the oxidation of adamantane suggests that the present type of peroxo species is not directly involved in catalytic Gif-type oxygenations of adamantane.  相似文献   

19.
Density functional theory has been used to investigate the thermodynamics and activation barriers associated with the direct oxidation of methane to acetic acid catalyzed by Pd2+ cation in concentrated sulfuric acid. Pd2+ cations in such solutions are ligated by two bisulfate anions and by one or two molecules of sulfuric acid. Methane oxidation is initiated by the addition of CH4 across one of the Pd-O bonds of a bisulfate ligand to form Pd(HSO4)(CH3)(H2SO4)2. The latter species will react with CO to produce Pd(HSO4)(CH3CO)(H2SO4)2. The most likely path to the final products is found to be via oxidation of Pd(HSO4)(CH3)(H2SO4)2 and Pd(HSO4)(CH3CO)(H2SO4)2 to form Pd(eta2-HSO4)(HSO4)2(CH3)(H2SO4) and Pd(eta2-HSO4)(HSO4)2(CH3CO)(H2SO4), respectively. CH3HSO4 or CH3COHSO4 is then produced by reductive elimination from the latter two species, and CH(3)COOH is then formed by hydrolysis of CH3COHSO4. The loss of Pd2+ from solution to form Pd(0) or Pd-black is predicted to occur via reduction with CO. This process is offset, though, by reoxidation of palladium by either H2SO4 or O2.  相似文献   

20.
The development of a new chemical transformation, namely oxidative C-arylation of saturated (NH)-heterocycles, is described. This reaction combines dehydrogenation and arylation in one process, leading to cross-coupling of (NH)-heterocycles and haloarenes. Typical reaction conditions involve heating the reaction partners in anhydrous dioxane at 120-150 degrees C in the presence of RhCl(CO)[P(Fur)3]2 as the catalyst and Cs2CO3 as the base. Addition of tert-butylethylene as the hydrogen acceptor increases the chemical yield by diminishing the dehalogenation pathway. This method demonstrated a good substrate scope, allowing for cross-coupling of a variety of (NH)-heterocycles (e.g., pyrrolidine, piperidine, piperazine, morpholine) and halo(hetero)arenes to afford valuable heterocyclic products in one step. The preliminary mechanistic studies provided some insight regarding the key events in the proposed catalytic cycle, including beta-hydride elimination of an amido rhodium complex and carbometalation of the resulting imine. A large kinetic isotope effect [KIE (kC-H/kC-D) = 4.3] suggests that one or both beta-hydride elimination steps are rate determining. The central role for the phosphine ligand was established in controlling the partitioning between the oxidative C-arylation and N-arylation pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号