首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the electric field on the binding energy of the ground state of a shallow donor impurity in a graded GaAs quantum-well wire (GQWW) was investigated. The electric field was applied parallel to the symmetry axes of the wire. Within the effective mass approximation, we calculated the binding energy of the donor impurity by a variational method as a function of the wire dimension, applied electric field, and donor impurity position. We show that changes in the donor binding energy in GQWWs strongly depend not only on the quantum confinement, but also on the direction of the electric field and on the impurity position. We also compared our results with those for the square quantum-well wire (SQWW). The results we obtained describe the behavior of impurities in both square and graded quantum wires. PACS 68.65.-k; 71.55.-i; 71.55.Eq  相似文献   

2.
The effects of external electric and magnetic fields on the ground state binding energy of hydrogenic donor impurity are compared in square, V-shaped, and parabolic quantum wells. With the effective-mass envelope-function approximation theory, the ground state binding energies of hydrogenic donor impurity in InGaAsP/InP QWs are calculated through the plane wave basis method. The results indicate that as the quantum well width increases, the binding energy changes most fast in SQW. When the well width is fixed, the binding energy is the largest in VQW for the donor impurity located near the center of QWs. For the smaller and larger well width, the electric field effect on binding energy is the most significant in VQW and SQW, respectively. The magnetic field effect on binding energy is the most significant in VQW. The combined effects of electric and magnetic fields on the binding energy of hydrogenic donor impurity are qualitative consistent in different shaped QWs.  相似文献   

3.
We have calculated variationally the ground state binding energy of a hydrogenic donor impurity in a parabolic quantum well in the presence of crossed electric and magnetic fields. These homogeneous crossed fields are such that the magnetic field is parallel to the heterostructure layers and the electric field is applied perpendicular to the magnetic field. The dependence of the donor impurity binding energy to the well width and the strength of the electric and magnetic fields are discussed. We hope that the obtained results will provide important improvements in device applications, especially for a suitable choice of both fields in the narrow well widths.  相似文献   

4.
The effect of a longitudinal magnetic and a transverse electric fields on the binding energy of a hydrogen-like donor impurity is studied for a semiconductor quantum well-wire approximated by a cylindrical well of finite depth. It is shown that the magnetic and electric fields as well as the impurity distance from the wire axis are the effective tools for the influence on the binding energy.  相似文献   

5.
The combined effects of hydrostatic pressure and temperature on donor impurity binding energy in GaAs/Ga0.7Al0.3As double quantum well in the presence of the electric and magnetic fields which are applied along the growth direction have been studied by using a variational technique within the effective-mass approximation. The results show that an increment in temperature results in a decrement in donor impurity binding energy while an increment in the pressure for the same temperature enhances the binding energy and the pressure effects on donor binding energy are lower than those due to the magnetic field.  相似文献   

6.
The effect of uniform electric and magnetic fields on binding energy and photoionization cross-section of an off-axis hydrogen-like donor impurity in a QWW, approximated by a cylindrical well of finite depth, is investigated within the framework of variational approach. The dependencies of the binding energy and photoionization cross-section on electric field strength, magnetic field induction, wire radius and impurity position are obtained. The cases when the polarization vector of incident radiation is parallel and perpendicular to the wire axis are both discussed.  相似文献   

7.
Using the variational method and the effective mass and parabolic band approximations, the behaviour of the binding energy and photo-ionization cross section of a hydrogenic-like donor impurity in an InAs quantum ring, with Pöschl-Teller confinement potential along the axial direction, has been studied. In the investigation, the combined effects of hydrostatic pressure and electric and magnetic fields applied in the direction of growth have been taken into account. Parallel polarization of the incident radiation and several values of the applied electric and magnetic fields, hydrostatic pressure, and parameters of the Pöschl-Teller confinement potential were considered. The results obtained can be summarised as follows: (1) the influence of the applied electric and magnetic fields and the asymmetry degree of the Pöschl-Teller confinement potential on the donor binding energy is strongly dependent on the impurity position along the growth and radial directions of the quantum ring, (2) the binding energy is an increasing function of hydrostatic pressure and (3) the decrease (increase) in the binding energy with the electric and magnetic fields and parameters of the confinement potential (hydrostatic pressure) leads to a red shift (blue shift) of the maximum of the photo-ionization cross section spectrum of the on-centre impurity.  相似文献   

8.
Based on the effective mass approximation, the magnetic and thermal properties of parabolic GaAs quantum dot have been investigated in the presence of Rashba Spin-Orbit interaction (RSOI), donor impurity and applied magnetic and electric fields. The exact diagonalization method has been used to solve the Hamiltonian of an electron confined in a quantum dot (QD) and obtain the eigenenergies and the binding energy of the donor impurity as a function of various QD physical parameters. We have shown the dependence of the average statistical energy, magnetization, magnetic susceptibility and heat capacity of the donor impurity in the QD on: the Rashba interaction parameter, the magnetic and electric fields, confining frequency, and temperature. The results reveal that these parameters can tune the magnetic properties of the GaAs quantum dot and flip the sign of magnetic susceptibility from negative (diamagnetic) to positive (paramagnetic) type material.  相似文献   

9.
We consider the effects of electric and magnetic fields as well as of hydrostatic pressure on the donor binding energy in InAs Pöschl-Teller quantum rings. The ground state energy and the electron wave function are calculated within the effective mass and parabolic band approximations, using the variational method. The binding energy dependencies on the electric field strength and the hydrostatic pressure are reported for different values of quantum ring size and shape, the parameters of the Pöschl-Teller confining potential, and the magnetic field induction. The results show that the binding energy is an increasing or decreasing function of the electric field, depending on the chosen parameters of the confining potential. Also, we have observed that the binding energy is an increasing/decreasing function of hydrostatic pressure/magnetic field induction. Likewise, the impurity binding energy behaves as an increasing/decreasing function of the inner/outer radii of the quantum ring nanostructure.  相似文献   

10.
In this work, we directly calculate the ground state energies for an electron in quantum well wires (QWWs) with different shapes in the presence of applied electric and magnetic fields using the finite difference method. Then, we study the ground state binding energy of a hydrogenic impurity with a variational approach. We obtain the binding energy for QWWs consisting of the combinations of square and parabolic well potential. Our results indicate that the impurity binding energy depends strongly on the structural confinement and also, on the applied electric and magnetic field.  相似文献   

11.
张红  翟利学  王学  张春元  刘建军 《中国物理 B》2011,20(3):37301-037301
This paper presents a systematic study of the ground-state binding energies of a hydrogenic impurity in quantum dots subjected to external electric and magnetic fields.The quantum dot is modeled by superposing a lateral parabolic potential,a Gaussian potential and the energies are calculated via the finite-difference method within the effectivemass approximation.The variation of the binding energy with the lateral confinement,external field,position of the impurity,and quantum-size is studied in detail.All these factors lead to complicated binding energies of the donor,and the following results are found:(1) the binding energies of the donor increase with the increasing magnetic strength and lateral confinement,and reduce with the increasing electric strength and the dot size;(2) there is a maximum value of the binding energies as the impurity placed in different positions along the z direction;(3) the electric field destroys the symmetric behaviour of the donor binding energies as the position of the impurity.  相似文献   

12.
13.
Esra Aciksoz  Orhan Bayrak  Asim Soylu 《中国物理 B》2016,25(10):100302-100302
The behavior of a donor in the GaAs–Ga_(1-x)Al_xAs quantum well wire represented by the Morse potential is examined within the framework of the effective-mass approximation. The donor binding energies are numerically calculated for with and without the electric and magnetic fields in order to show their influence on the binding energies. Moreover, how the donor binding energies change for the constant potential parameters(De, re, and a) as well as with the different values of the electric and magnetic field strengths is determined. It is found that the donor binding energy is highly dependent on the external electric and magnetic fields as well as parameters of the Morse potential.  相似文献   

14.
The ground-state binding energy of a hydrogenic donor impurity in wurtzite (WZ) GaN/AlGaN coupled quantum dots (QDs) is calculated by means of a variational method, considering the strong built-in electric fields caused by the piezoelectricity and spontaneous polarizations. The strong built-in electric fields induce an asymmetrical distribution of the ground-state binding energy with respect to the center of the coupled QDs. If the impurity is located at the low dot, the ground-state binding energy is insensitive to the interdot barrier width of WZ GaN/AlGaN coupled QDs.  相似文献   

15.
A systematic study of binding energy of the ground state of a hydrogenic donor in a quantum well is calculated in the presence of a uniform electric field for different measure of laser intensities. Binding energy of the ground state of a donor is calculated, within the effective mass approximation, with the Bessel and Airy functions. Polarizability of a laser dressed donor impurity in the presence of electric field is reported. It is observed that the polarizability (i) increases as intensity of the laser field increases (ii) increases with the electric field strength and (iii) increases drastically when both the fields are applied. The dependence of the donor binding energy on the well width, the laser field intensity and the electric field is discussed. Our results are in good agreement with the previous investigations for other heterostructures in the presence of laser intensity.  相似文献   

16.
Using a variational approach, the binding energy of shallow hydrogenic impurities in a parabolic quantum wire is calculated within the effective mass approximation. The polaron effects on the ground-state binding energy in electric and magnetic fields are investigated by means of the Pekar–Landau variation technique. The results for the binding energy as well as a polaronic correction are obtained as a function of the applied fields and the impurity positions.  相似文献   

17.
The binding energy of laser dressed donor impurity is calculated under the influence of a magnetic field in a quantum well. The binding energy of the ground state of a donor is investigated, within the single band effective mass approximation, variationally for different concentrations at the well centre. The effect of laser and magnetic fields on diamagnetic susceptibility of the hydrogenic donor is reported. The Landau energy levels of electrons in the quantum well as a function of magnetic field are reported. The results show that the diamagnetic susceptibility (i) decreases drastically as intensity of the laser field increases (ii) increases with the magnetic field strength (iii) decreases as the Al-concentration decreases and (iv) a variation of increase in binding energy is observed when non-parabolicity is included and this effect is predominant for narrow wells. Our results are in good agreement with previous investigations for other heterostructures in the presence of laser intensity.  相似文献   

18.
The laser-field dependence of the shallow donor states in a free-standing thin GaAs film under an external static field is studied within the effective mass approximation. The laser dressing effects are considered for the confinement potential of the well as well as for the impurity Coulomb interaction distorted by the dielectric mismatch at interfaces. We found that (i) the increase of the laser intensity dramatically modifies the electron potential energy, which establishes the quantum confinement; (ii) the ground state subband energy is significantly enhanced by the electrostatic self-energy arising from the interaction between the electron and its images; (iii) the impurity binding is much larger than those of the dielectrically homogenous case and it becomes stronger sensitive to the laser intensity variation; (iv) under an electric field parallel to the growth direction, the inversion symmetry with respect to the quantum well center is broken and a red/blue-shift of the binding energy, depending on the impurity position along the field direction, occurs. Therefore, the shallow donor energy levels in the free-standing thin films can be tuned in a wide range by proper tailoring of the structure parameters (well size, impurity position) as well as by varying the external applied fields.  相似文献   

19.
Based on the effective-mass approximation, the donor binding energy in a cylindrical zinc-blende (ZB) symmetric InGaN/GaN coupled quantum dots (QDs) is investigated variationally in the presence of an applied electric field. Numerical results show that the ground-state donor binding energy is highly dependent on the impurity positions, coupled QDs structure parameters and applied electric field. The applied electric field induces an asymmetric distribution of the donor binding energy with respect to the center of the coupled QDs. When the impurity is located at the center of the right dot, the donor binding energy has a maximum value with increasing the dot height. Moreover, the donor binding energy is the largest and insensitive to the large applied electric field (F?400 kV/cm) when the impurity is located at the center of the right dot in ZB symmetric In0.1Ga0.9N/GaN coupled QDs. In addition, if the impurity is located inside the right dot, the donor binding energy is insensitive to large middle barrier width (Lmb?2.5 nm) of ZB symmetric In0.1Ga0.9N/GaN coupled QDs.  相似文献   

20.
Within the framework of the effective-mass approximation and variational procedure, competition effects between applied electric field and quantum size on donor impurity states in the direct-gap Ge/SiGe quantum well (QW) have been investigated theoretically. Numerical results show that the applied electric field (quantum size) dominates electron and impurity states in direct-gap Ge/SiGe QW with large (small) well width. Moreover, the competition effects also induce that the donor binding energies show obviously different behaviors with respect to electric field in the QW with different well widths. In particular, when the impurity is located at left boundary of the QW, the donor binding energy is insensitive to the variation of well width when well width is large for any electric field case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号