首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a Langevin diffusion with a target stationary density with respect to Lebesgue measure, as opposed to the volume measure of a previously-proposed diffusion. The two are sometimes equivalent but in general distinct and lead to different Metropolis-adjusted Langevin algorithms, which we compare.  相似文献   

2.
One of the most widely used samplers in practice is the component-wise Metropolis–Hastings (CMH) sampler that updates in turn the components of a vector-valued Markov chain using accept–reject moves generated from a proposal distribution. When the target distribution of a Markov chain is irregularly shaped, a “good” proposal distribution for one region of the state–space might be a “poor” one for another region. We consider a component-wise multiple-try Metropolis (CMTM) algorithm that chooses from a set of candidate moves sampled from different distributions. The computational efficiency is increased using an adaptation rule for the CMTM algorithm that dynamically builds a better set of proposal distributions as the Markov chain runs. The ergodicity of the adaptive chain is demonstrated theoretically. The performance is studied via simulations and real data examples. Supplementary material for this article is available online.  相似文献   

3.
In this paper we perform a spectral analysis for the kernel operator associated with the transition kernel for the Metropolis–Hastings algorithm that uses a fixed, location independent proposal distribution. Our main result is to establish the spectrum of the kernel operator T in the continuous case, thereby generalizing the results obtained by Liu in (Statist. Comput. 6, 113–119 1996) for the finite case.  相似文献   

4.
In this paper, we study the problem of sampling from a given probability density function that is known to be smooth and strongly log-concave. We analyze several methods of approximate sampling based on discretizations of the (highly overdamped) Langevin diffusion and establish guarantees on its error measured in the Wasserstein-2 distance. Our guarantees improve or extend the state-of-the-art results in three directions. First, we provide an upper bound on the error of the first-order Langevin Monte Carlo (LMC) algorithm with optimized varying step-size. This result has the advantage of being horizon free (we do not need to know in advance the target precision) and to improve by a logarithmic factor the corresponding result for the constant step-size. Second, we study the case where accurate evaluations of the gradient of the log-density are unavailable, but one can have access to approximations of the aforementioned gradient. In such a situation, we consider both deterministic and stochastic approximations of the gradient and provide an upper bound on the sampling error of the first-order LMC that quantifies the impact of the gradient evaluation inaccuracies. Third, we establish upper bounds for two versions of the second-order LMC, which leverage the Hessian of the log-density. We provide non asymptotic guarantees on the sampling error of these second-order LMCs. These guarantees reveal that the second-order LMC algorithms improve on the first-order LMC in ill-conditioned settings.  相似文献   

5.
The Monte Carlo within Metropolis (MCwM) algorithm, interpreted as a perturbed Metropolis–Hastings (MH) algorithm, provides an approach for approximate sampling when the target distribution is intractable. Assuming the unperturbed Markov chain is geometrically ergodic, we show explicit estimates of the difference between the nth step distributions of the perturbed MCwM and the unperturbed MH chains. These bounds are based on novel perturbation results for Markov chains which are of interest beyond the MCwM setting. To apply the bounds, we need to control the difference between the transition probabilities of the two chains and to verify stability of the perturbed chain.  相似文献   

6.
Summary  This paper considers simulation-based approaches for the gamma stochastic frontier model. Efficient Markov chain Monte Carlo methods are proposed for sampling the posterior distribution of the parameters. Maximum likelihood estimation is also discussed based on the stochastic approximation algorithm. The methods are applied to a data set of the U.S. electric utility industry. The authors are grateful to two anonymous referees for their useful comments, which improved an earlier version of the paper. The first author also thanks the financial support by the Japanese Ministry of Education, Culture, Sports, Science and Technology under the Grant-in-Aid for Scientific Research No.14730022.  相似文献   

7.
Gaussian process models have been widely used in spatial statistics but face tremendous modeling and computational challenges for very large nonstationary spatial datasets. To address these challenges, we develop a Bayesian modeling approach using a nonstationary covariance function constructed based on adaptively selected partitions. The partitioned nonstationary class allows one to knit together local covariance parameters into a valid global nonstationary covariance for prediction, where the local covariance parameters are allowed to be estimated within each partition to reduce computational cost. To further facilitate the computations in local covariance estimation and global prediction, we use the full-scale covariance approximation (FSA) approach for the Bayesian inference of our model. One of our contributions is to model the partitions stochastically by embedding a modified treed partitioning process into the hierarchical models that leads to automated partitioning and substantial computational benefits. We illustrate the utility of our method with simulation studies and the global Total Ozone Matrix Spectrometer (TOMS) data. Supplementary materials for this article are available online.  相似文献   

8.
Process monitoring and control requires the detection of structural changes in a data stream in real time. This article introduces an efficient sequential Monte Carlo algorithm designed for learning unknown changepoints in continuous time. The method is intuitively simple: new changepoints for the latest window of data are proposed by conditioning only on data observed since the most recent estimated changepoint, as these observations carry most of the information about the current state of the process. The proposed method shows improved performance over the current state of the art. Another advantage of the proposed algorithm is that it can be made adaptive, varying the number of particles according to the apparent local complexity of the target changepoint probability distribution. This saves valuable computing time when changes in the changepoint distribution are negligible, and enables rebalancing of the importance weights of existing particles when a significant change in the target distribution is encountered. The plain and adaptive versions of the method are illustrated using the canonical continuous time changepoint problem of inferring the intensity of an inhomogeneous Poisson process, although the method is generally applicable to any changepoint problem. Performance is demonstrated using both conjugate and nonconjugate Bayesian models for the intensity. Appendices to the article are available online, illustrating the method on other models and applications.  相似文献   

9.
Model comparison for the purposes of selection, averaging, and validation is a problem found throughout statistics. Within the Bayesian paradigm, these problems all require the calculation of the posterior probabilities of models within a particular class. Substantial progress has been made in recent years, but difficulties remain in the implementation of existing schemes. This article presents adaptive sequential Monte Carlo (SMC) sampling strategies to characterize the posterior distribution of a collection of models, as well as the parameters of those models. Both a simple product estimator and a combination of SMC and a path sampling estimator are considered and existing theoretical results are extended to include the path sampling variant. A novel approach to the automatic specification of distributions within SMC algorithms is presented and shown to outperform the state of the art in this area. The performance of the proposed strategies is demonstrated via an extensive empirical study. Comparisons with state-of-the-art algorithms show that the proposed algorithms are always competitive, and often substantially superior to alternative techniques, at equal computational cost and considerably less application-specific implementation effort. Supplementary materials for this article are available online.  相似文献   

10.
Abstract

This article proposes a robust method of statistical inference for the Cox's proportional hazards model with frailties. We use the Metropolis—Hastings algorithm and the bootstrap method. We present a computationally efficient algorithm with a customized data structure to implement this method and demonstrate this technique with real data.  相似文献   

11.
We study the integration of functions with respect to an unknown density. Information is available as oracle calls to the integrand and to the non-normalized density function. We are interested in analyzing the integration error of optimal algorithms (or the complexity of the problem) with emphasis on the variability of the weight function. For a corresponding large class of problem instances we show that the complexity grows linearly in the variability, and the simple Monte Carlo method provides an almost optimal algorithm. Under additional geometric restrictions (mainly log-concavity) for the density functions, we establish that a suitable adaptive local Metropolis algorithm is almost optimal and outperforms any non-adaptive algorithm.  相似文献   

12.
A stochastic approximation (SA) algorithm with new adaptive step sizes for solving unconstrained minimization problems in noisy environment is proposed. New adaptive step size scheme uses ordered statistics of fixed number of previous noisy function values as a criterion for accepting good and rejecting bad steps. The scheme allows the algorithm to move in bigger steps and avoid steps proportional to $1/k$ when it is expected that larger steps will improve the performance. An algorithm with the new adaptive scheme is defined for a general descent direction. The almost sure convergence is established. The performance of new algorithm is tested on a set of standard test problems and compared with relevant algorithms. Numerical results support theoretical expectations and verify efficiency of the algorithm regardless of chosen search direction and noise level. Numerical results on problems arising in machine learning are also presented. Linear regression problem is considered using real data set. The results suggest that the proposed algorithm shows promise.  相似文献   

13.
How long should we run a stochastic global optimisation algorithm such as simulated annealing? How should we tune such an algorithm? This paper proposes an approach to the study of these questions through successive approximation of a generic stochastic global optimisation algorithm with a sequence of stochastic processes, culminating in a backtracking adaptive search process. Our emerging understanding of backtracking adaptive search can thus be used to study the original algorithm. The first approximation, the averaged range process, has the same expected number of iterations to convergence as the original process.  相似文献   

14.
We present an extension of continuous domain Simulated Annealing. Our algorithm employs a globally reaching candidate generator, adaptive stochastic acceptance probabilities, and converges in probability to the optimal value. An application to simulation-optimization problems with asymptotically diminishing errors is presented. Numerical results on a noisy protein-folding problem are included.  相似文献   

15.
Consider the two problems of simulating observations and estimating expectations and normalizing constants for multiple distributions. First, we present a self-adjusted mixture sampling method, which accommodates both adaptive serial tempering and a generalized Wang–Landau algorithm. The set of distributions are combined into a labeled mixture, with the mixture weights depending on the initial estimates of log normalizing constants (or free energies). Then, observations are generated by Markov transitions, and free energy estimates are adjusted online by stochastic approximation. We propose two stochastic approximation schemes by Rao–Blackwellization of the scheme commonly used, and derive the optimal choice of a gain matrix, resulting in the minimum asymptotic variance for free energy estimation, in a simple and feasible form. Second, we develop an offline method, locally weighted histogram analysis, for estimating free energies and expectations, using all the simulated data from multiple distributions by either self-adjusted mixture sampling or other sampling algorithms. This method can be computationally much faster, with little sacrifice of statistical efficiency, than a global method currently used, especially when a large number of distributions are involved. We provide both theoretical results and numerical studies to demonstrate the advantages of the proposed methods.  相似文献   

16.
Multistage stochastic programs with interstage independent random parameters have recourse functions that do not depend on the state of the system. Decomposition-based algorithms can exploit this structure by sharing cuts (outer-linearizations of the recourse function) among different scenario subproblems at the same stage. The ability to share cuts is necessary in practical implementations of algorithms that incorporate Monte Carlo sampling within the decomposition scheme. In this paper, we provide methodology for sharing cuts in decomposition algorithms for stochastic programs that satisfy certain interstage dependency models. These techniques enable sampling-based algorithms to handle a richer class of multistage problems, and may also be used to accelerate the convergence of exact decomposition algorithms. Research leading to this work was partially supported by the Department of Energy Contract DE-FG03-92ER25116-A002; the Office of Naval Research Contract N00014-89-J-1659; the National Science Foundation Grants ECS-8906260, DMS-8913089; and the Electric Power Research Institute Contract RP 8010-09, CSA-4O05335. This author's work was supported in part by the National Research Council under a Research Associateship at the Naval Postgraduate School, Monterey, California.  相似文献   

17.
The problem of marginal density estimation for a multivariate density function f(x) can be generally stated as a problem of density function estimation for a random vector λ(x) of dimension lower than that of x. In this article, we propose a technique, the so-called continuous Contour Monte Carlo (CCMC) algorithm, for solving this problem. CCMC can be viewed as a continuous version of the contour Monte Carlo (CMC) algorithm recently proposed in the literature. CCMC abandons the use of sample space partitioning and incorporates the techniques of kernel density estimation into its simulations. CCMC is more general than other marginal density estimation algorithms. First, it works for any density functions, even for those having a rugged or unbalanced energy landscape. Second, it works for any transformation λ(x) regardless of the availability of the analytical form of the inverse transformation. In this article, CCMC is applied to estimate the unknown normalizing constant function for a spatial autologistic model, and the estimate is then used in a Bayesian analysis for the spatial autologistic model in place of the true normalizing constant function. Numerical results on the U.S. cancer mortality data indicate that the Bayesian method can produce much more accurate estimates than the MPLE and MCMLE methods for the parameters of the spatial autologistic model.  相似文献   

18.
In this paper we study the asymptotic behavior of the normalized weighted empirical occupation measures of a diffusion process on a compact manifold which is killed at a smooth rate and then regenerated at a random location, distributed according to the weighted empirical occupation measure. We show that the weighted occupation measures almost surely comprise an asymptotic pseudo-trajectory for a certain deterministic measure-valued semiflow, after suitably rescaling the time, and that with probability one they converge to the quasi-stationary distribution of the killed diffusion. These results provide theoretical justification for a scalable quasi-stationary Monte Carlo method for sampling from Bayesian posterior distributions.  相似文献   

19.
In Bayesian analysis of mixture models, the label-switching problem occurs as a result of the posterior distribution being invariant to any permutation of cluster indices under symmetric priors. To solve this problem, we propose a novel relabeling algorithm and its variants by investigating an approximate posterior distribution of the latent allocation variables instead of dealing with the component parameters directly. We demonstrate that our relabeling algorithm can be formulated in a rigorous framework based on information theory. Under some circumstances, it is shown to resemble the classical Kullback-Leibler relabeling algorithm and include the recently proposed equivalence classes representatives relabeling algorithm as a special case. Using simulation studies and real data examples, we illustrate the efficiency of our algorithm in dealing with various label-switching phenomena. Supplemental materials for this article are available online.  相似文献   

20.
We study approximating multivariate functions from a reproducing kernel Hilbert space with the error between the function and its approximation measured in a weighted -norm. We consider functions with an arbitrarily large number of variables, , and we focus on the randomized setting with algorithms using standard information consisting of function values at randomly chosen points.

We prove that standard information in the randomized setting is as powerful as linear information in the worst case setting. Linear information means that algorithms may use arbitrary continuous linear functionals, and by the power of information we mean the speed of convergence of the th minimal errors, i.e., of the minimal errors among all algorithms using function evaluations. Previously, it was only known that standard information in the randomized setting is no more powerful than the linear information in the worst case setting.

We also study (strong) tractability of multivariate approximation in the randomized setting. That is, we study when the minimal number of function evaluations needed to reduce the initial error by a factor is polynomial in  (strong tractability), and polynomial in and (tractability). We prove that these notions in the randomized setting for standard information are equivalent to the same notions in the worst case setting for linear information. This result is useful since for a number of important applications only standard information can be used and verifying (strong) tractability for standard information is in general difficult, whereas (strong) tractability in the worst case setting for linear information is known for many spaces and is relatively easy to check.

We illustrate the tractability results for weighted Korobov spaces. In particular, we present necessary and sufficient conditions for strong tractability and tractability. For product weights independent of , we prove that strong tractability is equivalent to tractability.

We stress that all proofs are constructive. That is, we provide randomized algorithms that enjoy the maximal speed of convergence. We also exhibit randomized algorithms which achieve strong tractability and tractability error bounds.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号