首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we demonstrate a “plug and play” approach to achieve multi-functionalization of Si. In this approach, externally synthesized functional nanoparticles are introduced onto device quality Si wafers and the surface chemical bonds are manipulated. Sonochemically synthesized Fe2O3 nanoparticles are introduced onto Si from an alcohol suspension. On annealing this sample in ultra-high vacuum, the oxygen atoms change the bonding partner from Fe to Si and desorb as SiO at 750 °C. This results in the formation of nanoparticles of Fe on the surface and exhibits ferromagnetic behavior. Deposition of a thin layer (2 nm) of Si onto the sample containing the metallic Fe nanoparticles followed by annealing at 560 °C leads to optically active Si. Photoluminescence measurements show that this sample emits light at three different wavelengths, namely 1.57, 1.61 and 1.63 μm, when excited by He–Ne or Ar lasers. Oxidation of this material results in the formation of a selective capping layer of SiO2. Thus we obtain multi-functional Si in an “all in one” form and we believe that this approach is universal.  相似文献   

2.
The growth of Cu on the clean and hydrogen-terminated Si(1 1 1) surfaces is studied in situ by low-energy electron microscopy (LEEM). The dependence of the growth of the “5×5” layer on the clean Si(1 1 1) 7×7 surface upon the deposition temperature is investigated by combining LEEM with LEED. After completion of the “5×5” layer not only the regular-shaped three-dimensional islands reported before are observed but also irregular shaped more two-dimensional islands. On the hydrogen-terminated Si(1 1 1) surface the formation of the “5×5” structure is suppressed and nano-scale islands form preferentially at the step edges and domain boundaries. This is attributed to the enhancement of the surface migration of Cu atoms by the elimination of the surface dangling bonds.  相似文献   

3.
The interface formation, electrical properties and the surface morphology of multilayered Ta/Ni/Ta/SiC contacts were reported in this study. It was found that the conducting behavior of the contacts so fabricated is much dependent on the metal layer thickness and the subsequent annealing temperature. Auger electron spectroscopy (AES) and X-ray diffraction analyses revealed that Ni2Si and TaC formed as a result of the annealing. The Ni atoms diffused downward to metal/SiC interface and converted into Ni2Si layer in adjacent to the SiC substrate. The released carbon atoms reacted with Ta atoms to form TaC layer. Ohmic contacts with specific contact resistivity as low as 3 × 10−4 Ω cm2 have been achieved after thermal annealing. The formation of carbon vacancies at the Ni2Si/SiC interface, probably created by dissociation of SiC and formation of TaC during thermal annealing, should be responsible for the ohmic formation of the annealed Ta/Ni/Ta contacts. The addition of Ta into the Ni metallization scheme to n-SiC restricted the accumulation of carbon atoms left behind during Ni2Si formation, improving the electrical and microstructure properties.  相似文献   

4.
Ge condensation process of a sandwiched structure of Si/SiGe/Si on silicon-on-insulator (SOI) to form SiGe-on- insulator (SGOI) substrate is investigated. The non-homogeneity of SiGe on insulator is observed after a long time oxidation and annealing due to an increased consumption of silicon at the inflection points of the corrugated SiGe film morphology, which happens in the case of the rough surface morphology, with lateral Si atoms diffusing to the inflection points of the corrugated SiGe film. The transmission electron microscopy measurements show that the non-homogeneous SiGe layer exhibits a single crystalline nature with perfect atom lattice. Possible formation mechanism of the non-homogeneity SiGe layer is presented by discussing the highly nonuniform oxidation rate that is spatially dependent in the Ge condensation process. The results are of guiding significance for fabricating the SGOI by Ge condensation process.  相似文献   

5.
CoSi2 nanostructures were formed through thermal agglomeration by annealing ultrathin Co film on Si substrate at high temperatures. The characteristics of the Schottky diodes with CoSi2 nanostructures capped by a Pt layer were measured and fitted using thermionic emission theory. All the diodes have a ideality factor less than 1.1. The results show that the Schottky barrier height of these diodes significantly decreases as the annealing temperature for CoSi2 agglomeration increases. The barrier height lowering is correlated with the agglomeration of CoSi2 film and the formation of CoSi2 nano-islands. The thermal field emission may be the major reason to cause barrier lowering. Although the Schottky contact interface consists of both CoSi2 nano-islands and Pt film whose individual contact barrier height to Si is very different, the current-voltage-temperature measurements reveal that the interface homogeneity is not degraded as expected. The study demonstrates that the CoSi2 nanostructures can both lower the Schottky barrier height and form an ideal Schottky contact with a Pt capping layer.  相似文献   

6.
Hexagonally ordered arrays of magnetic FePt nanoparticles on Si substrates are prepared by a self assembly of diblock copolymer PS-b-P2VP in toluene, a dip coating process and finally plasma treatment. The as-treated FePt nanoparticles are covered by an oxide layer that can be removed by a 40 s Ar+ sputtering. The effects of the sequence of adding salts on the composition distribution are revealed by x-ray photoelectron spectroscopy measurements. No particle agglomeration is observed after 600℃annealing for the present ordered array of FePt nanoparticles, which exhibits advantages in patterning FePt nanoparticles by a micellar method. Moreover, magnetic properties of the annealed FePt nanoparticles at room temperature are investigated by a vibrating sample magnetometer.  相似文献   

7.
The interactions among erbium, oxygen and silicon atoms on a Si(1 0 0)-2x1 reconstructed surface have been studied by means of X-ray photoelectron spectroscopy and Rutherford backscattering spectrometry. Erbium and oxygen were deposited at 600 °C on the Si surface and their behavior has been observed after different thermal processes. It was found that at 600 °C, the formation of a stable surface complex Er–O–Si is obtained together with Si oxidation; after an 800 °C annealing, the amount of oxygen bound to Si decreases and the remaining O atoms are mainly bonded to Er. An abrupt change was observed after 900 and 1000 °C annealings, which bury the Er atoms about 60 Å below the substrate surface. Our results give some hints to hypotise the O diffusion towards the Si bulk.  相似文献   

8.
姜礼华  曾祥斌  张笑 《物理学报》2012,61(1):16803-016803
采用等离子增强化学气相沉积法, 以氨气和硅烷为反应气体, p型单晶硅为衬底, 低温下(200 ℃)制备了非化学计量比氮化硅(SiNx)薄膜. 在N2氛围中, 于500–1100 ℃范围内对薄膜进行热退火处理. 室温下分别使用Fourier变换红外吸收(FTIR)光谱技术和X射线光电子能谱(XPS)技术测量未退火以及退火处理后SiNx薄膜的Si–N, Si–H, N–H键键合结构和Si 2p, N 1s电子结合能以及薄膜内N和Si原子含量比值R的变化. 详细讨论了不同温度退火处理下SiNx薄膜的FTIR和XPS光谱演化同薄膜内Si, N, H原子间键合方式变化之间的关系. 通过分析FTIR和XPS光谱发现退火温度低于800 ℃时, SiNx薄膜内Si–H和N–H键断裂后主要形成Si–N键; 当退火温度高于800 ℃时薄膜内Si–H和N–H键断裂利于N元素逸出和Si纳米粒子的形成; 当退火温度达到1100 ℃时N2与SiNx薄膜产生化学反应导致薄膜内N和Si原子含量比值R增加. 这些结果有助于控制高温下SiNx薄膜可能产生的化学反应和优化SiNx薄膜内的Si纳米粒子制备参数. 关键词: x薄膜')" href="#">SiNx薄膜 Fourier变换红外吸收光谱 X射线光电子能谱 键合结构  相似文献   

9.
Polycrystalline Si (poly-Si) films are in situ grown on Al-coated glass substrates by inductively coupled plasma chemical vapour deposition at a temperature as low as 350℃. Compared to the traditional annealing crystalliza- tion of amorphous Si/Al-layer structures, no layer exchange is observed and the resultant poly-Si film is much thicker than Al layer. By analysing the depth profiles of the elemental composition, no remains of A1 atoms are detected in Si layer within the limit (〈0.01 at.%) of the used evaluations. It is indicated that the poly-Si material obtained by Al-induced crystallization growth has more potential applications than that prepared by annealing the amorphous Si/Al-layer structures.  相似文献   

10.
In this work, the effect of tin-doped indium oxide (ITO) film as capping layer on the agglomeration of copper film and the appearance of copper silicide was studied. Both samples of Cu 100 nm/ITO 10 nm/Si and ITO 20 nm/Cu 100 nm/ITO 10 nm/Si were prepared by sputtering deposition. After annealing in a rapid thermal annealing (RTA) furnace at various temperatures for 5 min in vacuum, the samples were characterized by four probe measurement for sheet resistance, X-ray diffraction (XRD) analysis for phase identification, scanning electron microscopy (SEM) for surface morphology and transmission electron microscopy (TEM) for microstructure.The results show that the sample with ITO capping layer is a good diffusion barrier between copper and silicon at least up to 750 °C, which is 100 °C higher than that of the sample without ITO capping layer. The failure temperature of the sample with ITO capping layer is about 800 °C, which is 100 °C higher than that of the sample without ITO capping layer. The ITO capping layer on Cu/ITO/Si can obstacle the agglomeration of copper film and the appearance of Cu3Si phase.  相似文献   

11.
As metal-oxide-semiconductor field-effect transistor (MOSFET) devices are shrunk to the nanometer scale, flat shallow metal/Si electrical contacts must be formed in the source/drain region. This work demonstrates a method for the formation of epitaxial NiSi2 layers by a solid-phase reaction in Ni-P(8 nm)/Si(1 0 0) samples. The results show that the sheet resistance remained low when the samples were annealed at temperatures from 400 to 700 °C. P atoms can be regarded as diffusion barriers against the supply of Ni to the Si substrate, which caused the formation of Si-rich silicide (NiSi2) at low temperature. Furthermore, elemental P formed a stable capping layer with O, Ni and Si during the annealing process. A uniform NiSi2 layer with an atomically flat interface was formed by annealing at 700 °C because of the formation of a Si-Ni-P-O capping layer and a reduction in the total interface area.  相似文献   

12.
High-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS) and selected area electron diffraction (SAED) were used to study gadolinium and lanthanum silicate films deposited on Si(1 0 0) substrates using electron-beam evaporation from pressed-powder targets. As-deposited films consist of an amorphous silicate layer without an interfacial layer. After annealing at 900 °C in oxygen for 2 min, an interfacial SiO2 layer is formed in the gadolinium silicate film, while this interfacial layer is a SiO2-rich lanthanum silicate layer in the lanthanum silicate film. The formation of interfacial silicate layers is thermodynamically more favorable for the lanthanum films than for the gadolinium films. The gadolinium silicate films crystallize at a temperature between 1000 and 1050 °C, while the crystallization temperature for the lanthanum silicate films is between 900 and 950 °C.  相似文献   

13.
采用离子注入技术将Zn离子注入Si(001)基片,并在大气环境下加热氧化制备了ZnO纳米团簇.利用电子探针、薄膜X射线衍射仪、原子力显微镜和透射电子显微镜,对注入和热氧化后的薄膜成分、表面形貌和微观结构进行表征,探讨了热氧化温度以及注入剂量对纳米ZnO团簇的成核过程及生长行为的影响.结果表明,Zn离子注入到Si基片表面后形成了Zn纳米团簇,热氧化过程中Zn离子向表面扩散,在表面SiO2非晶层和Si基片多晶区的界面处形成纳米团簇.热氧化温度是影响ZnO纳米团簇结晶质量的一个重要参数.随着热氧化温度的升高,金属Zn的衍射峰强度逐渐变弱并消失,而ZnO的(101)衍射峰强度逐渐增强.当热氧化温度高于800 ℃以后,ZnO与SiO2之间开始发生化学反应形成Zn2SiO4. 关键词: ZnO纳米团簇 离子注入 微观结构 形貌分析  相似文献   

14.
The possibility of the formation of a dense array of size-uniform Ge clusters on the Si(111) surface in the presence of the Bi surfactant has been demonstrated using scanning tunneling microscopy. It has been shown that the deposition of germanium at room temperature leads to the formation of two types of clusters. Clusters containing two to four atoms are one monolayer thick and are mobile on the Bi layer. The second type, bilayer clusters, containing eight to ten atoms, transform into epitaxial islands after annealing at 400–500°C. Models of possible atomic structures of bilayer clusters have been considered taking into account their positions relative to Bi trimers. It has been found that the probability of the substitution of Si atoms for Ge atoms during cluster formation does not exceed 20%.  相似文献   

15.
The oxidation of SiGe film epitaxial grown on top of SOI wafers has been studied. These SiGe/SOI samples were oxidized at 700, 900, 1100 °C. Germanium atoms were rejected from SiGe film to SOI layer. A new Si1−xGex (x is minimal) layer formed at SiGe/Si interface. As the germanium atoms diffused, the new Si1−xGex (x is minimal) layer moved to Si/SiO2 interface. Propagation of threading dislocation in SiGe film to SOI substrate was hindered by the new SiGe/Si interface. Strain in SOI substrate transferred from SiGe film was released through dislocation nucleation and propagation inner. The relaxation of SiGe film could be described as: strain relaxed through strain equalization and transfer process between SiGe film and SOI substrates. Raman spectroscopy was used to characterize the strain of SiGe film. Microstructure of SiGe/SOI was observed by transmission electron microscope (TEM).  相似文献   

16.
Conversion electron Mössbauer spectroscopy (CEMS) has been applied to the study of the metastable c-FeSi phase (i.e. an iron silicide with CsCl lattice structure) that was synthesized by implantation of Si + ions of 50 keV in energy into f -Fe (95% 57 Fe) near room temperature with a nominal dose of 5 2 10 17 cm m 2 , and by molecular beam epitaxy (MBE). Iron silicide layers with different stoichiometry (FeSi 0.85 , FeSi, Fe 0.85 Si) were grown by codeposition of 57 Fe and Si onto an Fe buffer layer on MgO(100). For all FeSi layers the defective CsCl structure was observed after annealing at different temperatures. X-ray diffraction measurements were performed to determine the structure and epitaxial relationship of the c-FeSi films. The lattice parameter perpendicular to the film plane was found to be 2.77(5) Å. CEMS measurements revealed a lower than cubic site symmetry of the iron atoms for both the c-FeSi layers synthesized by ion implantation and by MBE. The formation of nearly undistorted c-FeSi after annealing is favored by excess Fe atoms in the deposited film.  相似文献   

17.
In order to form silicon (Si)-on-insulator (SOI) layers with various thicknesses, oxygen implantation with doses between 1.0×1017/cm2 and 6.0×1017/cm2 and at energies between 40 and 240 keV has been carried out into 300 mm diameter (100)Si wafers at a temperature of 560 °C. After implantation, Si wafers are annealed in dry Ar mixed with 1% O2 at a temperature of 1350 °C for 4 h. The quality of buried oxide (BOX) layers and the microstructure in implanted layers before and after annealing is characterized by transmission electron microscopy. The results reveal that the appreciable number of threading dislocations (TDs) is generated in SOI layers implanted at energies above 200 keV under the optimum dose-energy conditions for the continuous BOX layer formation. Whereas, in the case of discontinuous BOX layers, the TD generation is observed in samples implanted at energies above 120 keV. The generation of TDs is discussed with the emphasis on the effect of implantation energy. PACS 61.72Ff; 61.72Lk  相似文献   

18.
在超高真空中采用分子束外延(molecular beam epitaxial)技术进行C60分子在硅(111)-7×7表面的生长,并利用扫描隧道显微镜进行原位研究.室温下,相对于无层错半胞(unfaulted half unit cell),C60更易于吸附在有层错半胞(faulted half unit cell).表面台阶处的电子悬挂键密度最高,通过控制温度和时间进行退火处理后,C60分子会向着台阶的方向扩散并聚集.测量分子在不同吸附位 关键词: 60分子')" href="#">C60分子 分子束外延 Si(111)-7×7 超高真空扫描隧道显微镜  相似文献   

19.
The solid-phase epitaxy of iron silicide on the Si(111) surface coated with a native oxide layer is studied by high-resolution photoelectron spectroscopy using synchrotron radiation and by atomic force microscopy. The iron deposition dose changes up to 1 nm, and the annealing temperature changes up to 500°C. At room temperature, the native oxide layer is shown to be impermeable to Fe atoms and an iron film grows on the sample surface. An increase in the annealing temperature to ~100°C results in a change in the film morphology, increasing its heterogeneity. As the annealing temperature increases to ~250°C, Fe and Si atoms diffuse through the oxide layer and undergo a solid-phase reaction. As a result, stable iron monosilicide ?-FeSi forms.  相似文献   

20.
利用单能慢正电子束流,对原生的和经过电子辐照的6H-SiC内的缺陷形成及其退火行为进行研究.发现在n型6H-SiC中,经过退火后缺陷浓度降低.这主要是因为在退火过程中缺陷和间隙子的相互作用所引起.n型6H-Si经过1400 oC、30 min真空退火后,在SiC表面形成一个大约20 nm的Si层,这是在高温退火过程中Si原子向表面逸出的有力证明.在高温退火中,在样品的近表面区域有一个明显的表面效应,既在这些区域的S参数整体较大,这种现象与高温退火中Si不断向表面逸出有关.经过10 MeV的电子辐照,在n型6H-SiC中,正电子有效扩散长度从86.2 nm减少至39.1 nm,说明在样品中由于电子辐照产生大量缺陷.但是对p型6H-SiC,经过10 MeV电子辐照后有效扩散长度变化不大,这与其中缺陷的正电性有关.同时还对n型6H-SiC进行了1.8 MeV电子辐照后的300 oC退火实验,发现退火后缺陷浓度不减反增,这主要是因为在退火过程中,一些双空位缺陷和Si间隙子互相作用从而产生了VC缺陷的缘故.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号