首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hypocrellin A (HA), an efficient phototherapeutic agent, can chelate with lanthanum ion to form a 1:1 complex, which exhibits enhanced 1O2 generation quantum yield, a red-shifted absorption window, greatly improved water solubility, a much lengthened triplet excited state lifetime, and an increased affinity to DNA with respect to HA. These effects in turn lead to a more potent photodamage ability on calf thymus DNA for La3+-HA than HA in both aerobic and anaerobic conditions, indicating the potential application of La3+-HA in the field of photodynamic therapy (PDT).  相似文献   

2.
Stepwise complex formation is observed between 2,3,5,6-tetrakis(2-pyridyl)pyrazine (TPPZ) and a series of metal ions (M(n+) = Sc3+, Y3+, Ho3+, Eu3+, Lu3+, Nd3+, Zn2+, Mg2+, Ca2+, Ba2+, Sr2+, Li+), where TPPZ forms a 2:1 complex [(TPPZ)2-M(n+)] and a 1:1 complex [TPPZ-M(n+)] with Mn+ at low and high concentrations of metal ions, respectively. The fluorescence intensity of TPPZ begins to increase at high concentrations of metal ions, when the 2:1 (TPPZ)2-M(n+) complex is converted to the fluorescent 1:1 TPPZ-M(n+) complex. This is regarded as an "OFF-OFF-ON" fluorescence sensor for metal ions depending on the stepwise complex formation between TPPZ and metal ions. The fluorescence quantum yields of the TPPZ-M(n+) complex vary depending on the metal valence state, in which the fluorescence quantum yields of the divalent metal complexes (TPPZ-M2+) are much larger than those of the trivalent metal complexes (TPPZ-M3+). On the other hand, the binding constants of (TPPZ)2-M(n+) (K1) and TPPZ-M(n+) (K2) vary depending on the Lewis acidity of metal ions (i.e., both K1 and K2 values increase with increasing Lewis acidity of metal ions). Sc3+, which acts as the strongest Lewis acid, forms the (TPPZ)2-Sc3+ and TPPZ-Sc3+ complexes stoichiometrically with TPPZ. In such a case, "OFF-OFF-ON" switching of electron transfer from cobalt(II) tetraphenylporphyrin (CoTPP) to O2 is observed in the presence of Sc3+ and TPPZ depending on the ratio of Sc3+ to TPPZ. Electron transfer from CoTPP to O2 occurs at Sc3+ concentrations above the 1:2 ratio ([Sc3+]/[TPPZ]0 > 0.5), when the (TPPZ)2-Sc3+ complex is converted to the TPPZ-Sc3+ complex and TPPZ-(Sc3+)2, which act as promoters of electron transfer (ON) by the strong binding of O2*- with Sc3+. In sharp contrast, no electron transfer occurs without metal ion (OFF) or in the presence at Sc3+ concentrations below the 1:2 ratio (OFF), when the (TPPZ)2-Sc3+ complex has no binding site available for O2*-.  相似文献   

3.
Interaction of hypocrellin A (HA), a naturally perylenequinonoid, with fullerene C70 has been studied by UV–vis and fluorescence spectra, and the results show that HA and C70 can form a supramolecular assembly HA/C70 with a 2:1 stoichiometry in organic solvents and buffer solution containing poly(vinylpyrrolidone) (PVP). The triplet lifetime of HA and C70 are reduced due to the formation of supramolecular complex. Electron paramagnetic resonance (EPR) studies suggest that photoinduced electron transfer from N,N,N′N′-tetramethyldiethyleneamine (TMEDA) to the excited HA induces the generation of anion radical of HA (HA?), followed by further electron transfer from HA? to C70. HA can mediate the electron transfer from TMEDA to C70 and significantly enhance the intensity of characteristic Near-IR absorption transition of C70?, through efficient electron-transfer processes. Upon visible light irradiation, HA/C70 exhibits stronger photodamage ability on calf thymus DNA under anaerobic condition than HA and C70.  相似文献   

4.
In the presence of scandium triflate, an efficient photoinduced electron transfer from the triplet excited state of C(60) to p-chloranil occurs to produce C(60) radical cation which has a diagnostic NIR (near-infrared) absorption band at 980 nm, whereas no photoinduced electron transfer occurs from the triplet excited state of C(60) (3C(60)) to p-chloranil in the absence of scandium ion in benzonitrile. The electron-transfer rate obeys pseudo-first-order kinetics and the pseudo-first-order rate constant increases linearly with increasing p-chloranil concentration. The observed second-order rate constant of electron transfer (k(et)) increases linearly with increasing scandium ion concentration. In contrast to the case of the C(60)/p-chloranil/Sc(3+) system, the k(et) value for electron transfer from 3C(60) to p-benzoquinone increases with an increase in Sc(3+) concentration ([Sc(3+)]) to exhibit a first-order dependence on [Sc(3+)], changing to a second-order dependence at the high concentrations. Such a mixture of first-order and second-order dependence on [Sc(3+)] is also observed for a Sc(3+)-promoted electron transfer from CoTPP (TPP(2-) = tetraphenylporphyrin dianion) to p-benzoquinone. This is ascribed to formation of 1:1 and 1:2 complexes between the generated semiquinone radical anion and Sc(3+) at the low and high concentrations of Sc(3+), respectively. The transient absorption spectra of the radical cations of various fullerene derivatives were detected by laser flash photolysis of the fullerene/p-chloranil/Sc(3+) systems. The ESR spectra of the fullerene radical cations were also detected in frozen PhCN at 193 K under photoirradiation of the fullerene/p-chloranil/Sc(3+) systems. The Sc(3+)-promoted electron-transfer rate constants were determined for photoinduced electron transfer from the triplet excited states of C(60), C(70), and their derivatives to p-chloranil and the values are compared with the HOMO (highest occupied molecular orbital) levels of the fullerenes and their derivatives.  相似文献   

5.
Three long-wavelength absorbing dipeptide-modified hypocrellin B (HB) derivatives, Gly-HB, Tyr-HB, and Trp-HB, were prepared for application in photodynamic therapy (PDT). Their abilities to produce free radicals and singlet oxygen were compared in detail with EPR technique, and their binding interactions with calf thymus DNA (CT DNA) were studied by absorption spectra and DNA melting temperature measurements. Tyr-HB and Trp-HB distinguish themselves from Gly-HB and HB remarkably by their significantly improved efficiencies to generate semiquinone anion radicals, superoxide anion radicals, and hydroxyl radicals, as well as their affinity to CT DNA, as the result of the electron-donating properties and intercalating abilities of tyrosine and tryptophan groups. Tyr-HB and Trp-HB show remarkably enhanced photodamage capabilities on CT DNA than their parent HB in aerobic conditions. Moreover, they possess moderate photodamage abilities on CT DNA even in anaerobic conditions, indicating the role of Type I mechanism in their photodynamic behaviors.  相似文献   

6.
We have investigated the complexation of lanthanide ions (Nd3+, Eu3+, Gd3+, Tb3+, Dy3+) with three cyclam-based ligands (cyclam = 1,4,8,11-tetraazacyclotetradecane), namely 1,4,8,11-tetrakis(naphthylmethyl)cyclam (1), and two dendrimers consisting of a cyclam core appended with four dimethoxybenzene and eight naphthyl units (2) and twelve dimethoxybenzene and sixteen naphthyl units (3). In the free ligands the fluorescence of the naphthyl units is strongly quenched by exciplex formation with the cyclam nitrogens. Complexation with the metal ions prevents exciplex formation and revives the intense naphthyl fluorescence. Fluorescence and NMR titration experiments have revealed the formation of complexes with different metal/ligand stoichiometries in the case of 1, 2 and 3. Surprisingly, the large dendrimer 3 gives rise to a stable [M(3)3]3+ species. Energy transfer from the lowest singlet and triplet excited states of the peripheral naphthyl units to the lower lying excited states of Nd3+, Eu3+, Tb3+, Dy3+ coordinated to the cyclam core does not take place.  相似文献   

7.
[reaction; see text] Picosecond and nanosecond time-resolved resonance Raman (TR(3)) spectroscopy was employed to investigate the deprotonation/ionization reaction of p-hydroxyacetophenone (HA) after ultraviolet photolysis in water solution. The TR(3) spectra in conjunction with density functional theory (DFT) calculations were used to characterize the structure and dynamics of the excited-state HA deprotonation to form HA anions in near neutral water solvent. DFT calculations based on a solute-solvent intermolecular H-bonded complex model containing up to three water molecules were used to evaluate the H-bond interactions and their influence on the deprotonation reaction and the structures of the intermediates. The deprotonation reaction was found to occur on the triplet manifold with a planar H-bonded HA triplet complex as the precursor species. The HA triplet species is generated within several picoseconds and then decays with a approximately 10 ns time constant to produce the HA triplet anion species after 267 nm photolysis of HA in water solution. The triplet anion species was observed to decay with a time constant of about 90 ns into the ground-state anion species that was found to have a lifetime of about 200 ns. The DFT calculations on the H-bonded complexes of the anion triplet and ground-states species suggest that these anion species are H-bonded complexes with planar quinonoidal structures containing two water molecules H-bonded, respectively, with oxygen lone pairs of the carbonyl and deprotonated hydroxyl moieties. A deactivation scheme of the photoexcited HA in regard to the deprotonation reaction in neutral water solutions was proposed. With the above dynamic and structural information available, we briefly discuss the possible implications of the model HA photochemistry in water solutions for the photodeprotection reactions of related p-HP phototrigger compounds in aqueous solutions.  相似文献   

8.
陈文祥  Allen  N.S 《化学学报》1990,48(6):608-611
用闪光光介研究的结果显示了水溶性甲磺酸二苯甲酮季铵盐(1)经由n-λ^*激发导致三线态, 与叔胺形成三线态激发复合物, 同时再从叔胺夺取一个电子产生自由基阴离子。经过分子间抽氢产生ketyl自由基和烷基自由基, 通过对氧、PH和胺电离势的影响的研究证实了上述机理。  相似文献   

9.
In this study we report on the photophysical properties of some [RuL(CN)4](2-) complex ions where L = 2,2'-bipyridine (bpy), 5,5'-dimethyl-2,2'-bipyridine (dmb), 1,10-phenanthroline (phen), 1-ethyl-2-(2-pyridyl)benzimidazole (pbe), 2,2':6',2'-terpyridine (tpy) and [RuL3](2+) where L = bpy or phen. Measurements were carried out in H2O and D2O. The effect of the deuterium isotope effect on the lifetime of these complexes is discussed. It has also been found that the presence of cyano groups has a pronounced effect on the lifetime of the excited metal-to-ligand charge transfer ((3)MLCT) of these complexes. Quenching of the (3)MLCT states by oxygen is reported in H2O and D2O. The rate constants, k(q), for quenching of the (3)MLCT states of these ruthenium complex ions by molecular oxygen are in the range (2.55 to 7.01) x 10(9) M(-1) s(-1) in H2O and (3.38 to 5.69) x 10(9) M(-1) s(-1) in D2O. The efficiency of singlet oxygen, O2((1)Delta(g)), production as a result of the (3)MLCT quenching by oxygen, f(Delta)(T), is reported in D2O and found to be in the range 0.29-0.52. The rate constants, k(q)(Delta), for quenching of singlet oxygen by ground state sensitizers in D2O is also reported and found to be in the range (0.15 to 3.46) x 10(7) M(-1) s(-1). The rate constants and the efficiency of singlet oxygen formation are quantitatively reproduced by a model that assumes the competition of a non-charge transfer (nCT) and a CT deactivation channel. nCT deactivation occurs from a fully established spin-statistical equilibrium of (1)(T1(3)Sigma) and (3)(T1(3)Sigma) encounter complexes by internal conversion (IC) to lower excited complexes that dissociate to yield O2((1)Delta(g)), and O2((3)Sigmag-). The balance between CT and nCT deactivation channels which is described by the relative contribution p(CT) of CT induced deactivation is discussed. The kinetic model proposed for the quenching of pi-pi* triplet states by oxygen can also be applied to the quenching of (3)MLCT states by oxygen.  相似文献   

10.
The photodynamic properties of a new hypocrellin B (HB) derivative bearing a bispyrrolecarboxamide pendant (HB-Net) were investigated in detail. EPR experiments revealed that the generation ability of reactive oxygen species (ROS) of HB-Net is inferior to that of HB. DNA melting temperature measurements and ethidium bromide (EB) displacement assay illustrated the affinity of HB-Net toward dsDNA as the result of the bispyrrolecarboxamide unit, which is structurally related to the well-known minor groove binder netropsin. The radical generation abilities of HB and HB-Net can be enhanced by ascorbic acid via the photoinduced electron transfer from ascorbic acid to the photosensitizer, however, only the DNA photodamage capability of HB-Net can be improved significantly by ascorbic acid due to the stronger affinity of HB-Net to DNA. Consequently, the combination of HB-Net and ascorbic acid may lead to efficient DNA photodamage even in anaerobic conditions.  相似文献   

11.
Photoinduced electron transfer from a variety of electron donors including alkylbenzenes to the singlet excited state of acridine and pyrene is accelerated significantly by the presence of scandium triflate [Sc(OTf)(3)] in acetonitrile, whereas no photoinduced electron transfer from alkylbenzenes to the singlet excited state of acridine or pyrene takes place in the absence of Sc(OTf)(3). The rate constants of the Sc(OTf)(3)-promoted photoinduced electron-transfer reactions (k(et)) of acridine to afford the complex between acridine radical anion and Sc(OTf)(3) remain constant under the conditions such that all the acridine molecules form the complex with Sc(OTf)(3). In contrast to the case of acridine, the k(et) value of the Sc(OTf)(3)-promoted photoinduced electron transfer of pyrene increases with an increase in concentration of Sc(OTf)(3) to exhibit first-order dependence on [Sc(OTf)(3)] at low concentrations, changing to second-order dependence at high concentrations. The first-order and second-order dependence of k(et) on [Sc(OTf)(3)] is ascribed to the 1:1 and 1:2 complexes formation between pyrene radical anion and Sc(OTf)(3). The positive shifts of the one-electron redox potentials for the couple between the singlet excited state and the ground-state radical anion of acridine and pyrene in the presence of Sc(OTf)(3) as compared to those in the absence of Sc(OTf)(3) have been determined by adapting the free energy relationship for the photoinduced electron-transfer reactions. The Sc(OTf)(3)-promoted photoinduced electron transfer from hexamethylbenzene to the singlet excited state of acridine or pyrene leads to efficient oxygenation of hexamethylbenzene to produce pentamethylbenzyl alcohol which is further oxygenated under prolonged photoirradiation of an O(2)-saturated acetonitrile solution of hexamethylbenzene in the presence of acridine or pyrene which acts as a photocatalyst together with Sc(OTf)(3). The photocatalytic oxygenation mechanism has been proposed based on the studies on the quantum yields, the fluorescence quenching, and direct detection of the reaction intermediates by ESR and laser flash photolysis.  相似文献   

12.
The 351.1 nm photoelectron spectrum of the vinyldiazomethyl anion has been measured. The ion is generated through the reaction of the allyl anion with N(2)O in helium buffer gas in a flowing afterglow source. The spectrum exhibits the vibronic structure of the vinyldiazomethyl radical in its electronic ground state as well as in the first excited state. Electronic structure calculations have been performed for these molecules at the B3LYP/6-311++G(d,p) level of theory. A Franck-Condon simulation of the X (2)A' state portion of the spectrum has been carried out using the geometries and normal modes of the anion and radical obtained from these calculations. The simulation unambiguously shows that the ions predominantly have an E conformation. The electron affinity (EA) of the radical has been determined to be 1.864 +/- 0.007 eV. Vibrational frequencies of 185 +/- 10 and 415 +/- 20 cm(-1) observed in the spectrum have been identified as in-plane CCN bending and CCC bending modes, respectively, for the X (2)A' state. The spectrum for the A (2)A' state is broad and structureless, reflecting large geometry differences between the anion and the radical, particularly in the CCN angle, as well as vibronic coupling with the X (2)A' state. The DFT calculations have also been used to better understand the mechanism of the allyl anion reaction with N(2)O. Collision-induced dissociation of the structural isomer of the vinyldiazomethyl anion, the 1-pyrazolide ion, has been examined, and energetics of the structural isomers is discussed.  相似文献   

13.
Caffeic acid (CA) and its analogues such as rosmarinic acid are well known as antioxidative agents. Exposure to UVA is known to generate reactive oxygen species (ROS) such as singlet oxygen (1O2) and superoxide anion radical (*O2-) in the skin of animals, which in turn induces skin photodamage and photoaging. Because CA and its analogues quench 1O2, these compounds were topically applied to the abdominal skin of live hairless mice and were found to suppress ROS generation upon UVA exposure. Furthermore, the generation of UVA-induced ROS was also suppressed in the skin of mice that were orally given CA. In order to understand the mechanism by which CA blocks ROS production in UVA-exposed skin, the pharmacokinetics of CA upon oral administration to mice was followed and CA was found to efficiently distribute in the skin. These results suggest that skin damage by UVA-induced ROS generation is reduced by oral supplementation of CA, which has a scavenging and quenching activity against ROS.  相似文献   

14.
UVA, which accounts for approximately 95% of solar UV radiation, can cause mutations and skin cancer. Based mainly on the results of our study, this paper summarizes the mechanisms of UVA-induced DNA damage in the presence of various photosensitizers, and also proposes a new mechanism for its chemoprevention. UVA radiation induces DNA damage at the 5'-G of 5'-GG-3' sequence in double-stranded DNA through Type I mechanism, which involves electron transfer from guanine to activated photosensitizers. Endogenous sensitizers such as riboflavin and pterin derivatives and an exogenous sensitizer nalidixic acid mediate DNA photodamage via this mechanism. The major Type II mechanism involves the generation of singlet oxygen from photoactivated sensitizers, including hematoporphyrin and a fluoroquinolone antibacterial lomefloxacin, resulting in damage to guanines without preference for consecutive guanines. UVA also produces superoxide anion radical by an electron transfer from photoexcited sensitizers to oxygen (minor Type II mechanism), and DNA damage is induced by reactive species generated through the interaction of hydrogen peroxide with metal ions. The involvement of these mechanisms in UVA carcinogenesis is discussed. In addition, we found that xanthone derivatives inhibited DNA damage caused by photoexcited riboflavin via the quenching of its excited triplet state. It is thus considered that naturally occurring quenchers including xanthone derivatives may act as novel chemopreventive agents against photocarcinogenesis.  相似文献   

15.
The energy dependence of the fragmentation of a selection of ester enolate ions has been studied by variable, low-energy collision-induced dissociation experiments in the quadrupole collision cell of a hybrid BEQQ mass spectrometer. The dominant fragmentation reactions observed are where ΔH1 ? ΔH2=PA([RCCO]?) ? PA([?O]?) (PA=proton affinity). The anion of lowest proton affinity is formed preferentially at low internal energies with the yield of the anion of higher proton affinity increasing with increasing internal energy. The [CH3OCOCOCH2]? anion derived from methyl pyruvate forms [CH3OCO]? by reaction (2); this anion readily fragments to [CH3G]?+ CO consistent with a structure represented by a dipole-stabilized cluster of [CH3O]? and CO. Comparison of the 8-keV with the 50-eV collision-induced dissociation mass spectra indicated that the average internal energy of the fragmenting ions is considerably lower in the high-energy collisional experiments than it is in the low-energy collisional experiments.  相似文献   

16.
The photoelectron spectrum of the oxyallyl (OXA) radical anion has been measured. The radical anion has been generated in the reaction of the atomic oxygen radical anion (O(?-)) with acetone. Three low-lying electronic states of OXA have been observed in the spectrum. Electronic structure calculations have been performed for the triplet states ((3)B(2) and (3)B(1)) of OXA and the ground doublet state ((2)A(2)) of the radical anion using density functional theory (DFT). Spectral simulations have been carried out for the triplet states based on the results of the DFT calculations. The simulation identifies a vibrational progression of the CCC bending mode of the (3)B(2) state of OXA in the lower electron binding energy (eBE) portion of the spectrum. On top of the (3)B(2) feature, however, the experimental spectrum exhibits additional photoelectron peaks whose angular distribution is distinct from that for the vibronic peaks of the (3)B(2) state. Complete active space self-consistent field (CASSCF) method and second-order perturbation theory based on the CASSCF wave function (CASPT2) have been employed to study the lowest singlet state ((1)A(1)) of OXA. The simulation based on the results of these electronic structure calculations establishes that the overlapping peaks represent the vibrational ground level of the (1)A(1) state and its vibrational progression of the CO stretching mode. The (1)A(1) state is the lowest electronic state of OXA, and the electron affinity (EA) of OXA is 1.940 ± 0.010 eV. The (3)B(2) state is the first excited state with an electronic term energy of 55 ± 2 meV. The widths of the vibronic peaks of the X? (1)A(1) state are much broader than those of the a? (3)B(2) state, implying that the (1)A(1) state is indeed a transition state. The CASSCF and CASPT2 calculations suggest that the (1)A(1) state is at a potential maximum along the nuclear coordinate representing disrotatory motion of the two methylene groups, which leads to three-membered-ring formation, i.e., cyclopropanone. The simulation of b? (3)B(1) OXA reproduces the higher eBE portion of the spectrum very well. The term energy of the (3)B(1) state is 0.883 ± 0.012 eV. Photoelectron spectroscopic measurements have also been conducted for the other ion products of the O(?-) reaction with acetone. The photoelectron imaging spectrum of the acetylcarbene (AC) radical anion exhibits a broad, structureless feature, which is assigned to the X? (3)A' state of AC. The ground ((2)A') and first excited ((2)A') states of the 1-methylvinoxy (1-MVO) radical have been observed in the photoelectron spectrum of the 1-MVO ion, and their vibronic structure has been analyzed.  相似文献   

17.
The photosensitization mechanisms of urocanic acid (UA), the main skin chromophores of ultraviolet (UV) light, are investigated by means of theoretical calculations. The results indicate that the direct photooxidative damage to DNA bases by triplet state UA through electron transfer reaction is not favorable on thermodynamic grounds. However, UA can photogenerate various reactive oxygen species (ROS, e.g., (1)O(2), O(2)(-)) theoretically and the ROS-generating mechanisms are illustrated as follows. Firstly, the (1)O(2)-generating pathway involves direct energy transfer between triplet state UA and (3)O(2). Secondly, UA gives birth to O(2)(-) through two pathways: (i) direct electron transfer between triplet state UA and (3)O(2); (ii) electron transfer between anion radical of UA (generated through autoionization reactions) and (3)O(2).  相似文献   

18.
吡唑啉酮类稀土配合物的发光性质研究   总被引:3,自引:3,他引:0  
合成了一系列吡唑啉酮类稀土铽、铕、钐、钆、镝的配合物, 并采用元素分析、红外光谱和紫外-可见光谱对其进行了表征, 解析了铕配合物的晶体结构. 测定了配体的三重态能级, 研究了这4种配合物的发光性质. 并通过研究配体到稀土离子的能量传递过程, 合理地解释了这些稀土配合物发光性质的差异.  相似文献   

19.
C6O6- has been observed in mass spectra of the anionic reaction products between small molybdenum suboxide clusters and carbon monoxide. No other free oxocarbanions were observed, nor were any dianions. The anion photoelectron spectrum of C6O6- shows that the neutral has an adiabatic electron affinity of 2.54(5) eV and an excited triplet state with a term energy of 1.0(1) eV. Analysis of the mass spectra suggests that C6O6- may be forming from oligomerization of CO on bare or highly reduced molybdenum anion centers.  相似文献   

20.
Metal ion complexes of semiquinone radical anions exhibit different types of thermochromism depending on metal ions and quinones. Metal ion complexes of 1,10-phenanthroline-5,6-dione radical anion (PTQ(.-)) produced by the electron-transfer reduction of PTQ by 1,1'-dimethylferrocene (Me(2)Fc) in the presence of metal ions (Mg(2+) and Sc(3+)) exhibit the color change depending on temperature, accompanied by the concomitant change in the ESR signal intensity. In the case of Mg(2+), electron transfer from Me(2)Fc to PTQ is in equilibrium, when the concentration of the PTQ(.-)-Mg(2+) complex (lambda(max) = 486 nm) increases with increasing temperature because of the positive enthalpy for the electron-transfer equilibrium. In contrast to the case of Mg(2+), electron transfer from Me(2)Fc to PTQ is complete in the presence of Sc(3+), which is a much stronger Lewis acid than Mg(2+), to produce the PTQ(.-)-Sc(3+) complex (lambda(max) = 631 nm). This complex is in disproportionation equilibrium and the concentration of the PTQ(.-)-Sc(3+) complex increases with decreasing temperature because of the negative enthalpy for the proportionation direction, resulting in the remarkable color change in the visible region. On the other hand, the p-benzosemiquinone radical anion (Q(.-)) forms a 2:2 pi-dimer radical anion complex [Q(.-)-(Sc(3+))(2)-Q] with Q and Sc(3+) ions at 298 K (yellow color), which is converted to a 2:3 pi-dimer radical anion complex [Q(.-)-(Sc(3+))(3)-Q] with a strong absorption band at lambda(max) = 604 nm (blue color) when the temperature is lowered to 203 K. The change in the number of binding Sc(3+) ions depending on temperature also results in the remarkable color change, associated with the change in the ESR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号