首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(7):1339-1360
ABSTRACT

The coupled influence of solution acidity and redox electrolytes on the open-circuit potentials of polypyrrole-modified electrodes was studied by recording the potential vs. time dependencies. It was observed that doping anions affect the relative rate of the responses resulting from pH influence (pH response) and from the presence of a redox couple in the solution, such as Fe(III)/Fe(II) or Fe(CN)63-/4-(redox response). Separation of the pH and redox responses was possible for polypyrrole doped with large organic anions of weak acids (Tiron, sulphosalicylic acid, Indigo Carmine). In such cases, a very fast pH response was recorded after which the polymer potential relaxed to the solution redox potential in each case. The final stable potential was determined entirely by the potential of the redox couple in solution. The final potential was pH-independent unless the redox potential was influenced by solution acidity. The solution pH determines only the shape of the potential vs. the time dependence, e.g. much faster responses were observed for solutions with a higher H* concentration.  相似文献   

2.
Doping and dedoping characteristics of polypyrrole (PPy) formed electrochemically have been examined by means of energy-dispersive X-ray spectroscopy (EDS). Dodecylsulfate ions (DS) and perchlorate ions (ClO4) were embedded simultaneously in PPy when both ions were present on the polymerization of pyrrole. Sequential formation of PPy in the single dopant system allowed PPy/ClO4 to grow in the bulk of PPy/DS but not vice versa. DS was embedded not to leave the polymer on reduction but ClO4 moved in and out of the polymer on redox reaction. Cyclic voltammetry was employed to determine the redox reactivity of PPy in different electrolyte systems. NaClO4 was a better electrolyte for cyclic redox reaction than LiClO4 or KClO4. NaCl was a good electrolyte for cyclic redox reaction but Cl failed to penetrate in the PPy/DS bulk on reoxidation. The cyclic redox reactivity lasted longest when PPy/DS was redox-cycled sequentially in the NaCl electrolyte system and then in the NaClO4 system. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
The pH sensitivity of conducting polymer films is an important issue from the sensor design point of view. The doping and supporting electrolyte anions effect on the potentiometric sensitivity and response time of polypyrrole (PPy) electrodes towards changes of solution pH were studied. It was found that (i) the response of PPy doped by easily exchangeable common anions (Cl, NO3 , ClO4 ) in their solutions (KCl, KNO3, NaClO4) is slow. In contrast, (ii) polypyrrole films deposited in the presence of weak acid anions (phthalates, oxalates, salicylates) were characterised by instantaneous responses in the above mentioned solutions. On the basis of electrochemical experiments (open circuit potential vs. time dependencies, cyclic voltammetry, EQCM), the observed differences were attributed to different mechanisms of pH sensitivity of tested films. The long response times are related to the incorporation of the solution ions into the film in order to compensate charges created due to protonation. On the other hand, if the ion-exchange is hindered as in the case of (ii), instantaneous open circuit responses are observed due to polarisation of the oxidised polymer layer, analogously to the metal electrode. Moreover, for these films the internal pH buffering within the polymer membrane will weaken the pH change effect.The mechanisms were confirmed in the course of studying the pH effect in solutions containing anions easily (KCl, NaClO4, KNO3) or hardly exchangeable with polypyrrole (K2SO4, sodium poly(4-styrenesulphonate) solutions) acidified with H2SO4.  相似文献   

4.
《Electroanalysis》2003,15(4):263-269
Bilayers composed of polypyrrole: doped by perchlorate ions (PPy(ClO4) – anion exchanging inner layer) and by dodecyl sulfate ions (PPy(DS) – cation exchanging outer layer) are very effective charge trapping systems that are usually not observed for other bilayers comprised of polypyrrole. Chronopotentiometric experiments carried out for oxidation and reduction showed that the trapping effect in the inner layer resulted from different ion exchange properties of the component polymers, leading to a low permeability of the reduced outer layer towards anions. Estimated diffusion coefficients of Cl? anions in the oxidized and reduced PPy(DS) are in the range of 10?9 and lower than 10?10 cm2 s?1, respectively. The presence of the outer layer limiting the ion transfer was found to be beneficial to improve the signal resolution in amperometric mode of ion sensing within wide KCl concentration range, from 10?5 M up to 3 M. The influence of experimental conditions (film thickness, response time) on optimization of this novel kind of polymeric bilayer ion sensors was studied.  相似文献   

5.
A novel construction of solution free (pseudo)reference electrodes, compatible with all-solid-state potentiometric indicator electrodes, has been proposed. These electrodes use conducting polymers (CP): polypyrrole (PPy) or poly(3,4-ethylenedioxythiophene) (PEDOT). Two different arrangements have been tested: solely based on CP and those where the CP phase is covered with a poly(vinyl chloride) based outer membrane of tailored composition. The former arrangement was designed to suppress or compensate cation- and anion-exchange, using mobile perchlorate ions and poly(4-styrenesulfonate) or dodecylbenzenesulfonate anions as immobilized dopants. The following systems were used: (i) polypyrrole layers doped simultaneously by two kinds of anions, both mobile and immobilized in the polymer layer; (ii) bilayers of polypyrrole with anion exchanging inner layer and cation-exchanging outer layer; (iii) polypyrrole doped by surfactant dodecylbenzenesulfonate ions, which inhibit ion exchange on the polymer/solution interface. For the above systems, recorded potentials have been found to be practically independent of electrolyte concentration. The best results, profound stability of potentials, have been obtained for poly(3,4-ethylenedioxythiophene) or polypyrrole doped by poly(4-styrenesulfonate) anions covered by a poly(vinyl chloride) based membrane, containing both anion- and cation-exchangers as well as solid potassium chloride and silver chloride with metallic silver. Differently to the cases (i)-(iii) these electrodes are much less sensitive to the influence of redox and pH interferences. This arrangement has been also characterized using electrochemical impedance spectroscopy and chronopotentiometry.  相似文献   

6.
Nanostructured conductive polypyrrole has been prepared electrochemically on the surfaces of Cu/Au interdigital electrodes in the presence of Fe(II) as catalyst and ClO4? as anion dopant by using constant potential amperometry and cyclic voltammetry. The morphology of the conducting films was examined by field emission scanning electron microscopy, indicating a dependence from the processing technique. The synthesized polymer was used to investigate the properties of the gas sensing ability. The effect of the catalyst concentration on the oxidation mechanism of pyrrole was discussed. The PPy‐ClO4 gas sensors had demonstrated fast response time and high sensitivity to VOCs.  相似文献   

7.
《Electroanalysis》2005,17(18):1609-1615
Potentiometric Ag+ sensors were prepared by galvanostatic electropolymerization of 3,4‐ethylenedioxythiophene (EDOT) and pyrrole (Py) on glassy carbon electrodes by using sulfonated calixarenes as doping ions. Poly(3,4‐ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy) doped with p‐sulfonic calix[4]arene (C4S), p‐sulfonic calix[6]arene (C6S) and p‐sulfonic calix[8]arene (C8S) were compared. PEDOT and PPy doped with poly(styrene sulfonate) (PSS) were also included for comparison. The analytical performance of the conducting polymer‐based Ag+ sensors was studied by potentiometric measurements. All conducting polymer and dopant combinations showed sensitivity and selectivity to Ag+ compared to several alkali, alkaline‐earth, and transition‐metal cations. The type of the conducting polymer used for the fabrication of the electrodes was found to have a more significant effect on the selectivity of the electrodes to Ag+ than the ring size of the sulfonated calixarenes used as dopants. Selected conducting polymer‐based sensors were studied by cyclic voltammetry (CV) and energy dispersive analysis of X‐rays (EDAX) measurements. Results from the EDAX measurements show that both PEDOT‐ and PPy‐based membranes accumulate silver.  相似文献   

8.
Tamm  J.  Johanson  U.  Marandi  M.  Tamm  T.  Tamm  L. 《Russian Journal of Electrochemistry》2004,40(3):344-348
Experimental and theoretical methods have been used for characterization of the properties of polypyrrole films. The AFM studies show that the morphology of polypyrrole (PPy) films on polycrystalline gold electrodes at the first stages of synthesis depends on the structure of the metal surface. It was established that mobility of anions depends remarkably on the rate of electrodeposition of the polymer film. If PPy film was deposited at relatively low current density, mobility of ClO- 4 anion was not high enough to guarantee electroneutrality during redox cycling and cations take part in this process especially when Li+ cations were replaced by more mobile + cations. Semiempirical (AM1 and PM3) quantum-chemical methods were used for theoretical studies. It was established that different size and charge of the anions together with the variation in doping levels give rise to a different optimal conformation of oligopyrrole cations which, in turn, define the resulting polymer to be either all-anti (common linear chains) or all-syn (formation of helical structures) or a combination of the two.  相似文献   

9.
The two-electron two-proton redox reaction of the benzoquinone-hydroquinone (Q/QH2) couple in aqueous solution has been studied by cyclic voltammetry at platinum electrodes coated with polypyrrole benzensulphonate. In contrast to the behaviour on bare platinum, the voltammetric response of the Q/QH2 couple on polypyrrole is close to the Nernstian behaviour within pH range from 1 to 7. The heterogeneous rate constant ks determined from the peak separations is in the range of 10−3 cm s−1. It is independent of the film thickness in a wide range and slightly pH-dependent, with a minimum at pH 4. Compared with related results based on polypyrrole perchlorate-coated gold electrodes, less aging of the catalytic efficiency is observed. Higher peak currents with increasing polypyrrole coverage suggest partial diffusion of the substrate into the bulk of the film. Preliminary studies on more complex quinones, ubiquinone-1, plastoquinone-1 and the bis-quinone of dibenzo [18] crown-6 demonstrate similar catalytic effects of polypyrrole layers. Potential applications of polypyrrole-coated electrodes in organic electrochemistry and bioelectroanalytical chemistry are discussed.  相似文献   

10.
《先进技术聚合物》2018,29(1):401-406
Polypyrrole films on fluorine doped tin oxide (FTO)‐coated glass substrate were prepared in situ by placing FTO/glass substrates where pyrrole was polymerized by methyl orange‐ferric chloride complex. The atomic force microscopy image indicated growth of acicular nanorods of polypyrrole. These films exhibited catalytic activity towards I3/I redox couple and have been investigated for counter electrode application in dye‐sensitized solar cell (DSSC). The fabricated DSSC with N719 dye/TiO2 as photoanode, and PPy/FTO as counter electrode shows ~1.7% efficiency.  相似文献   

11.
Properties of electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) films were studied from the point of view of direct use as ion-sensing membranes in potentiometric or amperometric sensors. Stable and reproducible potentiometric characteristics were obtained for PEDOT doped by poly(4-styrenesulfonate) ions, PEDOT(PSS) (cationic characteristics), and PEDOT doped by hexacyanoferrate(II) anions, PEDOT(HCF) (anionic characteristics). As shown by voltammetric and EDAX results, the anion exchange properties of the latter polymer result from gradual replacement of HCF ions by Cl anions from solution. The zero-current potentiometric detection limit of PEDOT(PSS), equal to 3×10–6 M, can be shifted to 7×10–7 M by polarization using a cathodic current density of 3×10–7 A cm–2. PEDOT films doped by Cl or PSS ions can be used as membranes for sensing anions or cations, respectively, under pulse amperometric conditions, within the range from 10–4 to 1 M, comparable with that accessible by zero-current potentiometry. Dissolved oxygen (redox interferent of low charge transfer rate) exerts a minor influence on the slope of the potentiometric and amperometric characteristics of PEDOT films. Although the presence of redox reactants characterized by a high rate of charge transfer [Fe(CN)6 3–/4–] results in the disappearance of the potential dependence on KCl concentration, this disadvantageous effect is much less significant under pulse amperometric conditions.Contribution to the 3rd Baltic Conference on Electrochemistry, GDASK-SOBIESZEWO, 23–26 April 2003. Dedicated to the memory of Harry B. Mark, Jr. (February 28, 1934–March 3rd, 2003)  相似文献   

12.
《Electroanalysis》2005,17(7):556-570
Composites of inherently conductive polypyrrole (PPy) within highly hydrophilic poly(2‐hydroxyethyl methacrylate)‐based hydrogels (p(HEMA)) have been fabricated and their electrochemical properties investigated. The electrochemical characteristics observed by cyclic voltammetry suggest less facile reduction of PPy within the composite hydrogel compared to electropolymerized PPy, as shown by the shift in the reduction peak potential from ?472 mV for electropolymerized polypyrrole to ?636 mV for the electroconductive composite gel. The network impedance magnitude for the electroconductive hydrogel remains quite low, ca. 100 Ω, even upon approach to DC, over all frequencies and at all offset potentials suggesting retained electronic (bipolaronic) conductivity within the composite. In contrast, sustained application of +0.7 V (vs. Ag/AgCl, 3 M Cl?) for typically 100 min. (conditioning) to reduce the background amperometric current to <1.0 μA, resulted in complete loss of electroactivity. Nyquist plots suggest that sustained application of such a modest potential to the composite hydrogel results in impedance characteristics that resembles p(HEMA) without evidence of the conducting polymer component. PPy composite gels supported a larger ferrocene monocarboxylate diffusivity (Dappt=7.97×10?5 cm2 s?1) compared to electropolymerized PPy (Dappt=5.56×10?5 cm2 s?1), however a marked reduction in diffusivity (Dappt=1.01×10?5 cm2 s?1) was observed with the conditioned hydrogel composite. Cyclic voltammograms in buffer containing H2O2 showed an absence of redox peaks for electrodes coated with PPy‐containing membranes, suggesting possible chemical oxidation of polypyrrole by the oxidant  相似文献   

13.
The sorption of SO2−4 and Cl ions into polypyrrole films has been studied by the radiotracer method under potential cycling and steady state conditions using labelled H2SO4 and HCl. Although a potential dependent migration and penetration of anions in the film can be detected, no strong correlation was found between the amount of charge consumed in the oxidation and reduction processes and the number of sorbed anions. The number of positively charged sites attracting anions into the film seems to be significantly lower than that expected from the amount of charge involved in the electrochemical transformations.  相似文献   

14.
Polypyrrole (PPy) films doped with macrocyclic calixarene anions are attractive materials for the development of selective sensor materials and membrane systems as the incorporation of the macrocycles can confer specific recognition sites within the polymer matrix. However, unlike many other PPy films a calixarene‐doped system is more complicated as calixarenes are themselves electroactive. Here we present results on the electroactivity, impedance properties and morphology of polypyrrole doped with p‐sulfonatocalix[4]arene. The calixarene in the polymer was found to be irreversibly oxidised at potentials greater than 0.500 V vs. SCE and reacted to form a new redox active species that was trapped within the polymer matrix. The results from the impedance and EQCM studies indicated that the calixarene was permanently trapped within the polymer matrix and the polymer acted as a cation exchange material. In addition, the data acquired from the EQCM experiments showed that while the material displayed simple cation exchange properties at high scan rates, at lower scan rates the transport of neutral species was also observed. Overall, our findings indicate that the PPy‐C4S system is suitable for use as a stable conducting polymer doped with an immobile anion within the potential window of ?0.800 V to 0.500 V vs. SCE.  相似文献   

15.
The influence of anions ClO4 , NO3 , Cl, SO4 2–, and DDS (dodecyl sulfate) on the cyclic voltammetric response of polypyrrole-modified electrodes is studied. The change in the film composition is examined by electron probe microanalysis. It is established that essential changes in the shape of voltammograms take place during cycling if the anions are not sufficiently freely mobile in the polymer film and insertion of cations from the solution is necessary to guarantee electroneutrality of the system. Some differences between the mobility of Cl ions and ClO4 or NO3 ions are in good agreement with the results of semi-empirical quantum chemical calculations showing that the interaction of Cl and Br ions with pyrrole oligomers is stronger than that of NO3 or ClO4 ions. Nevertheless, it is established that the peak current determined from voltammograms increases linearly with the increase of the scan rate with very high correlation coefficient. It means that it is possible to describe the behavior of ClO4 , NO3 and Cl ions in the framework of the model of free ions. The redox behavior of the PPy films doped with anions of low mobility such as SO4 2– and DDS depends essentially on the nature of cations in the test solution. It is found that the mobility of cations increases in the row Li+ < Na+ < K+ < Cs+. The mobility of DDS ions in the PPy in ethanolic solution is significantly higher and their electrochemical properties are quite similar to PPy|Cl or NO3 film in aqueous solution.  相似文献   

16.
Electrodes based on oxidized polypyrrole films have potentiometric selectivity toward anions. When the films are overoxidized, however, electron-rich groups are introduced on to the polymer chains, reversing the selectivity of the electrodes from anionic to cationic. In this study, electrochemically overoxidized polypyrrole film electrodes were prepared, and the conditions for film formation that lead to near-Nernstian potentiometric response were investigated. It was found that the doping ion, overoxidation solution, and pH affect the response of these electrodes. Redox interference is significantly lower for the overoxidized polypyrrole films than for polypyrrole electrodes.  相似文献   

17.
Electrochemically active hybrid coatings based on cationic films, didodecyldimethylammonium bromide (DDAB), and poly(diallyldimethylammonium chloride) (PDDAC) are prepared on electrode surface by cycling the film-covered electrode repetitively in a pH 6.5 solution containing Fe(CN)6 3− and Ru(CN)6 4− anions. Modified electrodes exhibited stable and reversible voltammetric responses corresponding to characteristics of Fe(CN)6 3−/4− and Ru(CN)6 4−/3− redox couples. The cyclic voltammetric features of hybrid coatings resemble that of electron transfer process of surface-confined redox couple. Electrochemical quartz crystal microbalance results show that more amounts of electroactive anionic complexes partitioned into DDAB coating than those doped into PDDAC coating from the same doping solution. Peak potentials of hybrid film-bound redox couples showed a negative shift compared to those at bare electrode and this shift was more pronounced in the case of DDAB. Finally, the advantages of hybrid coatings in electrocatalysis are demonstrated with sulfur oxoanions.  相似文献   

18.
19.
A test electrode based on cyclotetrasiloxane containing ferrocenyl, hydroxide and amine moiety exhibits very good potentiometric performance toward anions. Especially, acetate ion shows non-Hofmeister behavior on selectivity. The addition of the tetraalkylammonium salt provides lipophilic cationic sites within the membrane and enhances the response to more lipophilic anions. As expected, potentiometric performances of slopes and detection limits for the most of lipophilic anions, such as ClO4 and SCN, are the most enhanced. However, the response to acetate ion was significantly decreased. In our knowledge, this is the first report that cyclic siloxane containing functional groups such as ferrocenyl moiety and hydroxyl group shows possible usage as a neutral carrier for an anion sensor.  相似文献   

20.
The surface of PPy prepared in a multiple electrolyte solution such as NaDS-NaClO4 in H2O shows a coarser structure than that of the polymer prepared in a single electrolyte system. DS with a large aliphatic chain is used as a dopant in preparation of PPy. The dopant is trapped in PPy when the polymer is reduced in an aqueous system. A cation Na+ or K+ is inserted into the polymer to balance the free DS liberated form and remained in it on reduction. PPy doped with DS shows a high degree of redox reactivity in the system of TBADS-AN but a poor stability in repeated redox process. The degree and rate of redox reactivity enhance when an aqueous solution of NaClO4 is used as an electrolyte system. Both Na+ and ClO4take part in the redox reaction and the reduction process is intense at only one current potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号