首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The relationship between the textural properties (pore size, pore volume and surface area) of reversed-phase silica gel packings for HPLC and the dynamic loading capacity of large biomolecules was studied by using silica gels manufactured by similar processes. Several silica gels whose unbonded pore diameters range from 100 to 250 A and whose pore volumes range from 1.0 to 1.4 ml/g have been prepared and characterized. The bonded phase is monomeric C18. The textural properties of the bonded silica gels are also presented and related to the properties of the unbonded silica gels.

Chromatographic evaluation with typical proteins in an underload-to-overload condition was performed in order to relate the influence of textural properties of silica gel to loading capacity and resolution. The packings with larger pore size and pore volume produced better column performance and higher loading of proteins.  相似文献   

2.
在强酸性条件下, 以三嵌段聚醚P123为模板, 合成了孔径大且粒径均匀的SBA-15介孔二氧化硅微球. 将含有少量三乙氧硅丙基氨基甲酸酯残基的纤维素-三(3,5-二甲基苯基氨基甲酸酯)通过分子间缩聚作用固载到氨丙基化的SBA-15微球上, 制得手性固定相; 采用常规和非常规的流动相模式, 对一些芳香醇的消旋体进行了手性拆分. 实验结果表明, 所制备的SBA-15微球不仅分散性良好, 具有规则的二维六方孔道结构, 而且消除了微孔; 所制备的键合手性固定相不仅固载手性选择剂的量大, 而且经六甲基二硅胺烷封端后可有效改善拖尾现象, 对实验选用的手性醇具有较高的拆分能力; 与大孔硅胶为基质的同类纤维素键合手性固定相相比, 该固定相对同种手性消旋体的分离因子明显提高.  相似文献   

3.
The effect of alkyl chain length on adsorbent pore volume and void volume of HPLC columns is described. The results provide evidence that alkyl chains attached on silica surface are densely packed. A correlation of a decrease of pore volume with an increase of the alkyl modifier chain length was found. Effective molecular volume of bonded chains was found to be similar to the molecular volume of corresponding liquid alkanes. An absence of noticeable penetration of acetonitrile, methanol, or tetrahydrofuran molecules between bonded chains at any water-organic eluent composition was found.  相似文献   

4.
Wu JH  Li XS  Zhao Y  Zhang W  Guo L  Feng YQ 《Journal of chromatography. A》2011,1218(20):2944-2953
A novel core-shell composite (SiO(2)-nLPD), consisting of micrometer-sized silica spheres as a core and nanometer titania particles as a surface coating, was prepared by liquid phase deposition (LPD). Here, we show the resulting core-shell composite to have better efficient and selective enrichment for mono- and multi-phosphopeptides than commercially available TiO(2) spheres without any enhancer. The material exhibited favorable characteristics for HPLC, which include narrow pore size distribution, high surface area and pore volume. We also show that the core-shell composite can efficiently separate adenosine phosphate compounds due to the Lewis acid-base interaction between titania and phosphate group when used as HPLC packings. After coating the silica sphere with titania by LPD, the silanol of silica spheres will be shielded and that the stationary phase, C(18) bonded SiO(2)-3LPD, could be used under extreme pH condition.  相似文献   

5.
氧化锆基质色谱填料适合于碱性物质,特别是生物大分子的分离,因而具有良好的应用前景。它的制备方法对其物理化学性质有很大的影响,从而影响填料的色谱性能。该文对氧化锆微球的制备方法及其物理化学性质进行了综述。分析表明,目前氧化锆基质色谱填料的制备方法存在着难以克服的缺点,要制备理想的锆基色谱填料需要新的思路。  相似文献   

6.
The development of standard operation procedures for the manufacture of a n-octadecyl bonded spherical silica packing from partially condensed tetraethoxysilane as silica source is described. The synthesis comprises five intermediate products and six synthesis steps which were examined according to their reproducibility and robustness. The results led to the optimisation of the manufacturing process for a n-octadecyl bonded silica. Correlations were drawn between the dynamic viscosity of the poly(ethoxy)siloxane (PES), the synthesis parameters, the resulting pore structural properties and particle size distribution of the silicas. Validated procedures were developed to manufacture spherical porous ultra-pure silicas with a specific surface area of 350 m2 g(-1) +/- 5% R.S.D., a specific pore volume of 1.0 ml (-1) +/- 3.7% R.S.D., an average pore diameter of 12.0 nm +/- 0.5% R.S.D. and an average particle diameter of 5 microm. Results are presented on trial batches and the final master batch which were both used as packing materials in reversed-phase liquid chromatography (RP-LC) columns. The latter columns were certified and accepted as an HPLC column as reference material (BCR-722) by the European Commission, Institute for Reference Materials and Measurements (IRMM), Geel, Belgium.  相似文献   

7.
Polyacrylonitrile (PAN)-based carbon nanofibers (CNFs) were prepared by using electrospinning method and heat treatment to get the media for hydrogen adsorption storage. Potassium hydroxide and zinc chloride activations were conducted to increase specific surface area and pore volume of CNFs. To investigate the relation between pore structure and the capacity of hydrogen adsorption, textural properties of activated CNFs were studied with micropore size distribution, specific surface area, and total pore volume by using BET (Brunauer-Emmett-Teller) surface analyzer apparatus and the capacity of hydrogen adsorption was evaluated by PCT (pressure-composition-temperature) hydrogen adsorption analyzer apparatus with volumetric method. The surface morphology of activated CNFs was observed by SEM (scanning electron microscope) images to investigate the surface change through activation. Even though specific surface area and total pore volume were important factors for increasing the capacity of hydrogen adsorption, the pore volume which has pore width (0.6-0.7 nm) was a much more effective factor than specific surface area and pore volume in PAN-based electrospun activated CNFs.  相似文献   

8.
Hexagonally ordered SBA-15 mesoporous silica spheres with large uniform pore diameters are obtained using the triblock copolymer, Pluronic P123, as template with a cosurfactant cetyltrimethylammonium bromide (CTAB) and the cosolvent ethanol in acidic media. A series of surface modified SBA-15 silica materials is prepared in the present work using mono- and trifunctional alkyl chains of various lengths which improves the hydrothermal and mechanical stability. Several techniques, such as element analysis, nitrogen sorption analysis, small angle X-ray diffraction, scanning electron microscopy (SEM), FTIR, solid-state (29)Si and (13)C NMR spectroscopy are employed to characterize the SBA-15 materials before and after surface modification with the organic components. Nitrogen sorption analysis is performed to calculate specific surface area, pore volume and pore size distribution. By surface modification with organic groups, the mesoporous SBA-15 silica spheres are potential materials for stationary phases in HPLC separation of small aromatic molecules and biomolecules. The HPLC performance of the present SBA-15 samples is therefore tested by means of a suitable test mixture.  相似文献   

9.
Summary Aminopropyl chemically bonded phases for high performance liquid chromatography (HPLC) have been prepared using mono- and trifunctional methoxyor ethoxysilanes. Three types of silica gel with different surface characteristics were used as support for the chemically bonded phases (CBPs). Surface characteristics of the packings before and after chemical modification were determined by porosity parameters, elemental analysis and CP/MAS NMR spectroscopy.29Si and13C CP/MAS NMR investigations gave informations about different interactions between aminosilyl ligands and/or these ligands and/or water molecules condensed in the pores of the silica gel surface. With decreasing pore diameter of the silica gel the proportion of protonated aminopropyl ligand increases.  相似文献   

10.
硅胶具备了许多色谱载体应具有的合适的表面物理化学参数.但硅基填料可使用的pH值范围较窄及其表面裸露的硅羟基对碱性物质和含N生物大分子的不可逆吸附等缺点限制了其在一些重要领域中的应用.氧化锆由于其优异的化学稳定性,特别是对碱性化合物和生物大分子的分离适应性而在色谱应用方面受到极大的关注[1,2],极有可能成为通用的色谱基质填料之一[3].本文旨在制备具有良好表面性质的锆基色谱填料,结合硅胶和氧化锆的优点,采用层层纳米自组装方法(LbL)[4]在微米硅胶球模板表面包覆多层纳米氧化锆颗粒,制备了新型氧化锆基质填料ZrO2/SiO2,…  相似文献   

11.
This paper describes the preparation and investigation of new, highly loaded, monomeric, silica based, reversed phase C18 and C30 packings. The influence of pore structure and endcapping on the properties of C18 and C30 packings is described. Using hydrothermal procedures, silicas with predictable pore size (9.3-25.5 nm) and surface area have been prepared. Silylation with long chain silanes substantially alters the pore structure of the silica: pore size and pore volume decrease. A new parameter, the volumetric surface coverage [mm3 x m(-2)] has been introduced. This parameter--calculated from on-column measured porosity data--indicates the pore volume portion occupied by the hydrocarbon chains. Endcapping does not significantly change the pore structure of the bonded phases. The reduced retentions (reduced with respect to unit area: [k/m2])--a good measure for comparing the retention behaviour of packings with different surface areas--are similar for most of the phases, demonstrating good accessibility of the pores for the solutes. Slightly lower retentions were found on the endcapped than on the non-endcapped phases for probes with dense pi-electron system (e.g. polyaromatic hydrocarbons) demonstrating the contribution of silanophilic interactions to the retention. The phases had been successfully used for various demanding separations, e.g. for the separation of flavonoids, carotenoids, resveratrol, and tocopherol isomers, fullerenes, and anions.  相似文献   

12.
以催化油浆为增孔剂的MCM-41介孔分子筛的合成   总被引:5,自引:0,他引:5  
采用阳离子表面活性剂十六烷基三甲基溴化铵为模板剂、正硅酸乙酯为硅源、硫酸铝为铝源,水热合成了以甲苯溶解的催化油浆为添加剂的MCM-41介孔分子筛,通过XRD、N2吸附脱附、TG-DTA、SEM等测试手段对合成样品进行了表征,重点研究了在甲苯/催化油浆=1∶1和2∶1(质量比)两个剂油比下分子筛结晶度、晶胞参数、BET表面积、平均孔径以及孔容等结构性质随催化油浆添加量的变化规律,并对合成机理进行了解释。结果表明,当剂油比为1∶1时,分子筛的结晶度和晶胞参数随催化油浆添加量的变化呈现先增加后减小趋势,当noil/nCTMAB=0.34时,其晶胞参数最大可以达到5.95 nm;当剂油比为2∶1时,随添加剂量的增加,分子筛结晶度降低,BET表面积成先增大后减小,而孔容和平均孔径呈逐渐增加趋势。当noil/nCTMAB=0.15时,MCM-41的BET表面积可达1163.7m2·g-1,孔容可达到1.34cm3·g-1,平均孔径为4.34 nm。  相似文献   

13.
制备高碳醇Cu-Fe系催化剂的比表面积、孔结构和孔径分布   总被引:14,自引:0,他引:14  
用ASAP-2000型物理吸附仪,研究了制备高碳醇Cu-Fe系催化剂的比表面积、孔结构、孔容积和孔径分布等.结果表明,随着焙烧温度的提高,比表面积下降;在相同的焙烧温度下,组成和沉淀过程的pH值也影响其表面积大小.催化剂的活性与反应可利用的表面积相关.根据吸附-脱附等温线,确定了催化剂的孔结构及孔径分布的变化规律.数据表明,孔径分布和孔容积对催化剂的活性至关重要,平均孔径(4V/A,根据BET)可作为衡量Cu-Fe系催化剂活性高低的一个参数.焙烧温度的选择是使催化剂具有适宜的孔径分布和较大的孔容积,因而具有较高活性的重要条件  相似文献   

14.
In this work, we compare the surface and morphometric properties of the pore networks in four silicas (code names Fr1428, Fr474, Fr1386, and MM1164) with different random porosities using the adsorption isotherms of two different probe adsorbents, nitrogen and methanol. The parent material Fr1428 was a pure silica 25 microm sample. The Fr474 sample was the same one with bonded electroneutral diol groups on its outer surface. Fr1386 was the parent material with bonded electroneutral diol groups on its outer surface and sulfonic groups on its inner surface, and the MM1164 sample was the original sample with external electroneutral diol groups and internal n-octadecyl groups. The properties examined were the specific surface area S(p) and the specific pore volume V(p), the pore connectivity c, the pore anisotropy b, the tortuosity tau, and the lacunarity lambda of the pore network as well as the percentage microporosity. These properties provide a complete characterization of complexity of the porous network. The surface areas of the solids were estimated via the traditional BET plots (S(BET)) and the I-point method (S(I)). The two sets of values S(BET) and S(I) were practically identical and they decrease as the size of the functional group increases. The values of percentage microporosity were also determined by the same I-point method using the variation of the C parameter of the BET equation. The total pore volume V(p) was found to be higher in the case of methanol adsorption, compared to nitrogen, which might be related to increase condensation. The networks of the pores were simulated using a dual site bond model (DSBM) and Monte Carlo (MC) techniques for achieving their proper arrangement into the solids. From the resulting simulating networks, the pore connectivity distributions (PCD) and their mean values c(mean) were estimated and favorably compared to the values of connectivity c(Seaton) determined according to the method of Seaton. Both values decrease with the size of the functional groups and are weakly affected by the adsorbent employed. From the simulation pore network, the mean values of tortuosity tau(mean) were also estimated and found to be lower when N2 was used as adsorbate compared to MeOH. The values of lacunarity lambda, estimated according to the method by Allain and Cloitre using the moving box technique in the DSBM/MC simulation matrix of the pore network, indicate that the distribution of the poreless mass into the matrix increases with the size of the functional group. Finally, the internal relationships observed between the pore anisotropy b and the percentage microporosity as well as between the tortuosity tau and the pore connectivity c are discussed.  相似文献   

15.
高温下热解温度对煤焦孔隙结构的影响   总被引:4,自引:0,他引:4  
利用高温沉降炉在1500K~1800K制备京西无烟煤煤焦,使用化学吸附法测定不同热解温度下煤焦比表面积及孔容积与孔径的分布特征,并采用SEM观察煤焦颗粒表面的形态,分析了高温下热解温度对煤焦孔隙结构的影响规律。结果表明,煤焦的比表面积主要由孔径小于10nm的微孔和中孔构成,而其孔容积则主要由孔径为2nm~50nm的中孔构成。高温下煤焦比表面积和孔容积随热解温度的升高,呈现先增大后减小的非单调变化现象,转折温度约为1600K。出现这种变化的主要原因是煤焦在热解温度超过1600K后开始烧结,产生较为光滑致密的表面结构,部分孔隙封闭。  相似文献   

16.
Two simple modification methods for ordered mesoporous silicas were examined and compared. MCM-41 molecular sieve was physically coated with 4-cyano-4-biphenyl [4(4-pentenyloxy)]benzoate (CBPB) and chemically modified using trimethylethoxysilane. The structural and surface properties of the obtained materials were characterized using elemental analysis, thermogravimetry and nitrogen adsorption over a wide pressure range.It was shown that the pore size of the MCM-41 material was not decreased significantly after the coating procedure, even for high loadings of CBPB. Moreover, low pressure adsorption measurements indicated that significant fractions of the MCM-41 surface were not covered by CBPB, even for high CBPB loadings, which suggests that the attained coverage may be very nonuniform. The chemical bonding procedure led to a marked decrease in the pore size and change of surface properties.It was demonstrated that nitrogen adsorption measurements provide a means of a thorough characterization of modified MCM-41 materials, allowing to estimate the surface area, pore volume and pore size distribution. Moreover, low pressure adsorption data can be used to qualitatively or semiquantitatively assess the surface coverage of the coated/bonded organic groups, which may be used to estimate the uniformity of the coverage and therefore, the usefulness of the modification procedure.  相似文献   

17.
High-temperature silylation (HTS) used for the deactivation of capillary columns was studied on the silica commonly used in HPLC to gain a better insight into this process. LiChrosorb Si 100 was silylated with disilazanes at different temperatures and the materials obtained were compared in terms of organic and silanol group surface concentration, IR reflection spectra, HPLC behavior, and pore distribution parameters. Applying diphenyltetramethyldisilazane, the volatile reaction products were monitored during the HTS process. With increasing silylation temperature up to 400°C the silanol surface concentration is reduced to a very small level independent of the organic group concentration which exhibits a broad maximum depending upon substituents and temperature. Up to 350°C triorganosiloxy groups prevail as bonded organic groups. It could be proved that HTS is accompanied by pore alterations of the silica matrix. Arguments proposed by different authors in explaining HTS effects are discussed.  相似文献   

18.
表层纳米氧化锆包覆硅球色谱载体的制备和表征   总被引:2,自引:0,他引:2  
硅胶是目前应用最为广泛的色谱载体. 硅胶的比表面积及孔体积大, 渗透性好, 孔结构适宜于色谱分离, 但在pH<2及pH>8条件下不稳定, 对碱性化合物, 尤其是对生物样品产生不可逆吸附. 氧化锆化学性质非常稳定[1], 适宜碱性样品尤其是生物大分子的分离; 但是其比表面积和孔体积小[2~5], 孔结构对色谱分离不利[6], 可涂敷的固定相量较小, 渗透性差. 本文采用分子自组装方法[7~9]在微米硅球表面包覆多层纳米氧化锆制备了较为理想的色谱载体.  相似文献   

19.
Summary A wide-pore silica for HPLC with a particle size of 7.5 m, specific surface area of 360m2/g, pore diameter of 20 nm and pore volume of 2.1 cm3/g was silanized with n-octadecyldimethyl-chlorosilane (ODMCS), n-octadecyldimethylmetoxysilane (ODMMS) and n-octadecyldimethyl-dimethylaminosilane (ODMAS), in sealed glass ampoules. The ligand density obtained with an excess of ODMCS and ODMMS was found to be limited by reaction equilibrium; at low (<50%) conversion of the surface silanols, the reaction displays pseudo-first-order kinetics. Silanization with ODMAS, which seems to be sterically controlled at higher conversions, yields a relatively high concentration of bonded octadecyl ligands (4.24mol/m2).Present adress: Department of Chemical Physics, Institute of Chemistry, Maria Curie-Sktodowska University, Pl-20 031 Lublin, Poland.  相似文献   

20.
Porous carbon nanofibers were prepared through electrospinning a blend solution of polyacrylonitrile and poly(L ‐lactide), followed by carbonization at different temperatures and in different atmospheres. Structural features of these porous carbon nanofibers were characterized using scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, X‐ray powder diffraction, and Raman spectroscopy. Surface area and pore structure were evaluated using the nitrogen adsorption technique. It was found that carbon fibers prepared by this scalable and relatively economical method exhibited a porous surface morphology with high specific surface area and large pore volume. The fiber diameter, surface area, pore volume, bulky crystalline structure, and surface crystalline structure of these carbon nanofibers showed a strong dependence on the polymer precursor composition and carbonization condition. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 493–503, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号