首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来, 太阳能驱动的光电化学水分解作为一种高效、环保、可持续的技术, 已经引起了广泛的关注. 为了更好地使用光电化学技术将太阳能转化为化学能, 至关重要的是提高光电极材料的光吸收和光转化效率. BiVO4禁带宽度(Eg=2.4-2.5 eV)小, 具有很好的可见光响应能力, 因此BiVO4光电极材料引起了广泛关注. 但是, 当单独BiVO4作为光电阳极材料时, 电子-空穴对分离弱、载流子传输慢, 从而使BiVO4不能很好地在光电化学水分解中发挥作用. 为了缓解或解决此类限制性因素, 本课题组通过水热法合成了NiFe双氢纳米粒子, 并将其负载于BiVO4电极表面, 光电催化分解水实验表明其产氢效率得到大幅度提高. 同时制备了Ni(OH)2/BiVO4和Fe(OH)2/BiVO4电极并用于研究NiFe/BiVO4电极的反应机理. 在上文基础上, 本文采用电子扫描电镜(SEM)、高分辨投射电镜(HRTEM)、X射线衍射(XRD)、紫外可见漫反射(UV-Vis DRS)等表征手段和线性扫描伏安法(LSV)和电流时间(I-t)等对其光电化学活性进行了测试, 研究了NiFe/BiVO4电极在发生水氧化时的反应机理. SEM结果表明, Ni(OH)2是以纳米片组成的纳米球负载于多孔BiVO4表面; 而当Fe(OH)2负载于BiVO4表面时, BiVO4的纳米尺寸减小; NiFe-LDH纳米粒子负载于BiVO4表面时, 可以明显看见BiVO4纳米颗粒表面包裹着一层更小的纳米粒子.这证明了Ni(OH)2, Fe(OH)2和NiFe-LDH纳米粒子均成功负载于BiVO4表面. 这也得到HRTEM结果的确认. UV-Vis DRS结果表明NiFe-LDH纳米粒子能有效拓宽BiVO4的吸收边, 从而增加对可见光的吸收, 增加了对光的利用率. LSV测试结果表明, 暗反应条件下Ni(OH)2/BiVO4比NiFe/BiVO4和Fe(OH)2/BiVO4电极的起始电位更低, 说明Ni(OH)2有更好的传输电子性能; 而在光照条件下, 在同一电位时NiFe/BiVO4比Ni(OH)2/BiVO4和Fe(OH)2/BiVO4电极的光电流值更高. 值得注意的是, 此时Ni(OH)2/BiVO4比Fe(OH)2/BiVO4电极的光电流值低, 这又说明Fe(OH)2比Ni(OH)2对光更敏感. 因此当NiFe-LDH纳米粒子负载于BiVO4表面时, 不仅提高了BiVO4光电极的光吸收效率, 而且加速了载流子的传输从而抑制了光生电子-空穴的复合, 使反应过程中的量子效率得到提高.  相似文献   

2.
通过"人工光合成"过程,将太阳能转化成氢能的形式加以存储和利用,是替代传统化石能源的清洁能源的制备有效途径.其中,光电化学分解水是氢能制备的最有潜力的路径之一.n型BiVO_4由于具有丰富的储量、较窄的带隙以及合适的能带位置,被称为光电化学领域的研究热点.然而,未修饰的BiVO_4光阳极性能并不理想,主要原因在于载流子复合严重、导电性差以及表面催化动力学低等性质的制约.科研工作者们针对这些方面已进行了非常多的研究,例如与电子传输层的复合、产氧电催化剂的担载以及异质结的构建等.其中表面动力学和电荷分离的同时提升是更理想的改善BiVO_4光阳极性能的方法.我们在上述研究基础上,采用光化学沉积法在纳米多孔BiVO_4电极表面担载无定形氧化铁层,将电极在1.23 V vs.RHE电位下的光电流提升至2.52 m A/cm2,是初始光电化学性能的3倍.采用间歇光照计时电流(i-t)测试,电化学交流阻抗谱(EIS),X射线光电子能谱(XPS),原位和非原位的X射线精细结构能谱(in-situ and ex-situ XAFS)等表征手段研究了无定形氧化铁层的成分和光电化学反应过程中的价态变化,从而分析出光电化学性能提升的原因.间歇光照i-t测试和EIS测试结果表明,无定形氧化铁沉积在BiVO_4使电荷累积减少,复合率降低.XPS测试结果发现无定形氧化铁层存在少量的二价铁成分.通过原位XAFS测试发现,BiVO_4/Fe Ox电极中Fe原子的价态在光照和施加外加偏压条件下会有价态的升高,而撤去光照和偏压后Fe原子的价态状态与最初非原位的测试结果重合.这样的结果证明了无定型氧化铁层在光电化学反应过程中由于二价铁成分的存在,能够很好的通过价态改变实现空穴的吸附和传输,即吸附空穴,被空穴氧化成三价或四价,同时结合自身电催化活性,促进表面分解水反应的进行.而水的氧化反应结束时,则伴随着二价铁离子的再生成.这种反应机理为开发更高效的电催化剂,匹配光电极使用,有着重大的指导意义.  相似文献   

3.
刘志锋  鲁雪 《催化学报》2018,39(9):1527-1533
光电化学分解水制氢可以一并解决环境问题和能源危机,因而成为研究热点.由于TiO_2 禁带宽度较大,不能有效吸收太阳光中的可见光,使光电化学分解水制氢的应用受限.g-C_3N_4的禁带宽度约为2.7 e V,能有效吸收可见光,但g-C_3N_4薄膜制备研究较少.我们通过热聚缩合法直接在FTO导电玻璃上制备出g-C_3N_4薄膜,发现其光电化学分解水制氢稳定性不高,选择易制备的TiO_2 作为保护层可以提高g-C_3N_4的耐用性.此外,为提高g-C_3N_4光生电子空穴对的分离能力,依靠Co-Pi对光生空穴的捕获作用而将其覆盖在最外层.因此本文首次制备一种新型的g-C_3N_4/TiO_2 /Co-Pi光阳极用于光电化学分解水制氢,其中g-C_3N_4用作光吸收层,TiO_2 用作保护层,Co-Pi用作空穴捕获层.并在此基础上,通过扫描电子显微镜(SEM),X射线衍射(XRD),紫外可见光谱(UV-Vis)等手段研究了g-C_3N_4/TiO_2 /Co-Pi光阳极的形貌特征和光电化学性能.SEM、EDS和XRD结果表明,g-C_3N_4/TiO_2 /Co-Pi光阳极被成功制备在了FTO导电玻璃上,厚度约为3μm.UV-Vis测试表明,g-C_3N_4的光吸收边约为470 nm,可以有效地吸收可见光,并且g-C_3N_4的框架结构使光多次反射折射增加了光的捕获能力,由此可见,g-C_3N_4能够发挥很好的光吸收层作用.通过对g-C_3N_4光阳极,g-C_3N_4/TiO_2 光阳极和g-C_3N_4/TiO_2 /Co-Pi光阳极的电流电压测试发现,g-C_3N_4/TiO_2 光阳极的光电流密度小于g-C_3N_4光阳极,而g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密在可逆氢电极1.1 V下达到了0.346 mA?cm–2,约为单独g-C_3N_4光阳极的3.6倍.这说明Co-Pi是提升g-C_3N_4光电化学性能的主要因素.电化学阻抗测试结果发现,g-C_3N_4/TiO_2 /Co-Pi光阳极的界面电荷转移电阻小于g-C_3N_4光阳极的,这表明g-C_3N_4/TiO_2 /Co-Pi光阳极界面处载流子转移较快,同时也能促进内部光生电子空穴对的分离,整体性能的提高应该主要归因于Co-Pi对光生空穴的捕获作用.恒电压时间测试展示出g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密度在2 h测试过程中没有明显下降,表明g-C_3N_4/TiO_2 /Co-Pi光阳极是相当稳定的,具有良好的耐用性,归因于TiO_2 和Co-Pi的共同保护作用,主要归因于TiO_2 层对FTO导电玻璃上的g-C_3N_4薄膜保护,从电化学沉积Co-Pi到所有测试结束.总体而言,g-C_3N_4/TiO_2 /Co-Pi光阳极加强的光电化学性能归因于以下几个因素:(1)g-C_3N_4优异的光吸收能力;(2)TiO_2 稳定的保护提升了g-C_3N_4薄膜的耐用性;(3)Co–Pi对光生空穴的捕获有效促进了光生电子空穴对的分离.  相似文献   

4.
光电催化分解水系统能直接将收集的电子与空穴用于分解水,将太阳能转化成了具有高能量密度的氢气,是一种集太阳能转化和储存于一体的高效绿色能源系统。光阴极和光阳极串联要求其在工作状态下两电极通过的总电流必须一致,低效率的一端将会限制整个体系的反应速度,因此对于光阳极材料的系统研究具有十分重要的意义。理论预测表明,基于部分可见光响应的半导体光阳极能带间隙计算得到的极限太阳能制氢转化效率达到了15%。但实际上由于光催化的整个过程是一个多步反应,各个步骤上发生的光生载流子的复合和损失导致了目前合成的相关电极材料的转换效率远低于理论水平。一般可以认为光催化过程包括五个步骤:光电极材料中电子的光致激发而产生电子-空穴对、电子和空穴由于能带弯曲的反向分离和传递、电子(或空穴)通过半导体-电解液界面的注入水中析氢(或析氧)、载流子的复合以及反应物和产物的传质过程。由于这些过程的进行效率与电极材料的本质特性和性能密切相关,为了评估材料性能而引入的一些效率指标往往和这几个步骤相对应。本文首先简要介绍了评价光阳极的一些效率计算以及它们与上述各个步骤的内在联系。最后,在前人和最近的研究基础上总结了几种对光阳极材料的主要提升策略,包括形貌控制、元素掺杂、异(同)质结和表面修饰等改性方法,对这些改性方法和各步骤效率之间的联系作了简单的介绍。  相似文献   

5.
太阳能驱动的光电化学(PEC)水分解可以有效地将太阳能转化为化学能,作为解决环境排放和能源危机最具前景的途径之一,已经引起了科学界的广泛关注.PEC水分解系统由两个半反应组成:在光阳极上的析氧反应(OER)和光阴极上的析氢反应(HER).PEC系统的太阳能转化效率主要由光阳极/电解质界面的OER过程所决定,这是一个非常复杂且涉及质子偶联的多步四电子转移过程.钒酸铋(BiVO4)是应用于PEC水分解的典型且具有实际应用前景的光阳极材料之一.然而,由于不良的表面电荷转移、电荷在光阳极/电解质结面处的表面复合以及缓慢的OER动力学等因素,导致BiVO4的PEC性能受到严重限制.本文开发了一种新颖有效的解决方案,以低成本、高电导率和具有快速电荷转移能力的硫化钴装饰来提升BiVO4光阳极的PEC活性,X射线多晶衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征,研究结果表明CoS成功装饰于BiVO4表面.采用紫外-可见吸收光谱(UV-VisDRS)研究了BiVO4和复合光阳极CoS/BiVO4的光学性质,结果表明,与纯的BiVO4相比,CoS/BiVO4光阳极在可见光范围内光吸收能力有所增强.将制备的BiVO4和CoS/BiVO4光阳极应用于PEC分解水实验中,结果表明,相对于1.23 V可逆氢电极,在光照下,CoS/BiVO4光阳极的光电流密度显著提升,可高达3.2 m Acm-2,是纯BiVO4的2.5倍以上.与纯BiVO4相比,CoS/BiVO4光阳极的起始氧化电位显示出负向偏移0.2 V,表明析氧过电势得到有效减小.入射光子转换效率(IPCE)测试结果表明,CoS/BiVO4光阳极的入射光子转换效率在500 nm之前的可见光范围内得到明显提升,其中,CoS/BiVO4的IPCE值在380 nm处达到最大.此外,由于CoS的装饰作用,CoS/BiVO4光阳极的电荷注入效率和电荷分离效率均得到较大的提升,分别达到75.8%(相较于纯BiVO4光阳极的36.7%)和79.8%(相较于纯BiVO4光阳极的66.8%).电化学阻抗谱(EIS)测试结果表明,通过CoS的装饰,CoS/BiVO4光阳极的界面电荷转移电阻得到有效降低,证明其界面电荷转移动力学得到有效提升.光致发光光谱测试结果表明,CoS的装饰显著提高了BiVO4的光生电子-空穴对的分离效率,进一步证明BiVO4表面的CoS装饰在其PEC分解水中起着非常积极的作用.本文为通过表面修饰设计应用于PEC水分解的有效的光阳极提供了新思路.  相似文献   

6.
在酸性水溶液中(pH=2.0),采用电化学还原(ER)方法对BiVO4薄膜电极进行预处理,并探讨了其对薄膜电极光电化学氧化水性能的影响.结果表明,这种预处理可显著提高电极的光电化学氧化水的性能,且具有良好的光电化学稳定性.利用扫描电子显微镜、X射线衍射、拉曼光谱、光电子能谱、紫外-可见漫反射光谱、荧光光谱、电化学阻抗谱及Mott-Schottky等方法对ER处理前后的电极进行了表征.结果表明,ER预处理使电极粗糙度增大,表面积增大约1.4倍;电极材料的晶型无明显变化,但V—O对称伸缩振动略有红移;表面Bi,V和O结合能变小,Bi3+部分被还原,Bi/V原子比增大;ER处理导致电极平带电位负移,光生载流子在薄膜电极/溶液界面转移速率加快,表面复合速率降低.这些变化和表面积增加是BiVO4电极光电化学性能提高的主要原因.  相似文献   

7.
光电化学电池(如染料敏化太阳能电池、量子点敏化太阳能电池以及光电化学水分解电池)是实现太阳能转化及存储的有效手段之一.其中,光电极是光电化学电池的核心组成部分,它集光吸收、光生电荷输运及转移等决定光转化效率的关键过程于一身,因此构筑高活性半导体光电极以实现高效太阳能转化利用引起研究者广泛关注.多孔Ti O2纳米颗粒堆垛薄膜光阳极因具有大的比表面积,可提供更多的染料(量子点)担载和反应活性位点,在光电化学电池中表现出优异活性而被广泛研究.然而,TiO 2纳米颗粒间大量存在的晶界对光生电荷有较强的散射作用,降低了光生电荷的收集效率.英国牛津大学Snaith研究小组利用模板辅助水热过程首次获得了(001)晶面占优的多孔单晶锐钛矿Ti O2微米颗粒,这种多孔单晶Ti O2微米颗粒在具有大比表面积的同时,其单晶结构还能有效去除晶界对电荷的散射作用,因而具有优异的电荷输运特性.利用这种多孔单晶Ti O2微米颗粒组建的光阳极用于染料敏化太阳能电池中,展现出优异的太阳能光电转化性能.受该工作启发,各种形貌的多孔单晶Ti O2微米颗粒作为光催化剂和光电化学分解水用光阳极材料被广泛研究,并表现出优异活性.在单晶微米颗粒堆垛成的薄膜光电极中,虽然单个单晶微米颗粒中晶界对电荷的散射作用被有效抑制,但是单晶颗粒间的晶界仍然存在并影响光生电荷的收集效率.为了彻底抑制晶界对光生电荷的散射作用,每个单晶颗粒都应该贯穿整个薄膜,例如一维Ti O2纳米棒单晶阵列薄膜.虽然一维单晶阵列薄膜能够有效提高光生电荷的收集效率,但相对于多孔薄膜具有较小的比表面积,限制了担载染料(量子点)和反应位点的数量.为了增大TiO 2单晶纳米棒阵列薄膜的比表面积,目前主要的手段包括调控纳米棒长径比、表面修饰Ti O2纳米颗粒以及二次生长构建Ti O2枝晶阵列.本文首次提出通过制备多孔单晶Ti O2纳米棒单晶阵列薄膜来获得高比表面积和高光生电荷收集效率的光阳极,提高光电化学电池的效率.在透明导电薄膜(FTO)表面利用水热生长Ti O2纳米棒阵列薄膜之前,预先在FTO基体上沉积一层Si O2球密堆模板,Ti O2纳米棒单晶阵列在从FTO表面向上生长过程中,会将SiO 2球模板包裹进Ti O2纳米棒中,再通过碱溶液将Si O2球模板溶解,首次在FTO基体上原位生长出多孔单晶Ti O2纳米棒阵列薄膜.将所得多孔单晶金红石Ti O2纳米棒阵列薄膜作为光电化学分解水电池光阳极,其光电化学分解水活性相对于实心单晶金红石Ti O2纳米棒阵列提高了2.6倍.多孔单晶金红石Ti O2纳米棒阵列光阳极性能的提升可归因于:(1)多孔结构赋予多孔单晶金红石Ti O2纳米棒阵列薄膜更大的比表面积,可提供更多的反应活性位点;(2)多孔结构能够有效缩短单晶金红石Ti O2纳米棒中光生电荷体相输运距离,提高光生电荷的收集效率;(3)多孔结构通过对光多次反射吸收可有效增强光吸收,产生更多光生电荷参与水分解反应;(4)在制备过程中引入Si掺杂,导致多孔单晶金红石Ti O2纳米棒带隙扩大了0.1 e V,带隙增大归因于导带位置负移0.1 e V,光生电子具有更强的还原能力,光电流起始电位相应负移约0.1 V.  相似文献   

8.
程翔  毕迎普 《分子催化》2020,34(4):341-365
光电催化水分解制氢是目前解决能源危机与环境污染最理想的技术之一.设计和构筑高效的光阳极是实现光电催化技术实际应用的关键.在众多半导体光阳极材料中,TiO_2纳米阵列由于其快的电荷传输速率,高的光热稳定性,无毒和成本低等优点,已经被广泛用于光电催化水分解反应的研究.但是TiO_2本征的光吸收范围窄、光生电荷复合率高、表面水氧化动力学缓慢严重地制约了其太阳能-氢能转换效率.我们结合近年来国内外及本课题组的研究工作详细论述了TiO_2纳米阵列的改性策略,主要包括利用元素掺杂来拓展TiO_2的光吸收范围并提高导电性,构筑异质结促进光电极电荷的分离与转移,半导体敏化增加光电极的可见光吸收并促进电荷转移,表面处理用于增加表面水氧化反应速率.最后指出了该材料发展现状,并对其发展前景做出展望.我们为进一步提高TiO_2纳米阵列的光电催化水分解活性提供了理论指导和实践借鉴.  相似文献   

9.
采用水热法合成出具有不同V、P物质的量之比的Bi VO_4/Bi PO_4复合物。n_V/n_P分别为:0.1/9.9、0.5/9.5、1/9、3/7、5/5。采用XRD、FE-SEM、EDS、拉曼、可见光光度计、漫反射以及电化学等测试手段对Bi VO_4/Bi PO_4复合物进行表征。在可见光条件下降解亚甲基蓝来评价Bi VO_4/Bi PO_4复合物的光催化活性。结果显示,当n_V/n_P3/7的时候,Bi VO_4/Bi PO_4复合物的光催化活性随着Bi VO_4含量的增加而增加,当n_V/n_P=3/7的时候,复合物具有最佳的光催化性能,反应速率常数k为0.005 1 min-1,是纯Bi PO_4的23.2倍。Bi VO_4/Bi PO_4复合物的光催化机制主要是由于Bi VO_4的加入,提高了电子-空穴的分离率,进而提高了光催化活性。  相似文献   

10.
光电化学水分解电池能够将太阳能直接转化为氢能,是一种理想的太阳能利用方式. p-n叠层电池具有理论转换效率高、成本低廉、材料选择灵活等优势,被认为是最有潜力的一类光电化学水分解电池. 然而,目前这类叠层电池的太阳能转化效率还不高,主要原因是单个电极的效率太低. 本文介绍了几种提高光电极分解水性能的方法--减小光生载流子的体相复合、表面复合以及抑制背反应等,同时综述了国内外关于几种p型半导体光阴极的研究进展,如Si、InP、CuIn1-x GaxS(Se)2、Cu2ZnSnS4等. 通过总结,作者提出一种p-Cu2ZnSnS4(CuIn1-xGaxS(Se)2)/n-Ta3N5(Fe2O3) 组装方式,有望获得高效低成本叠层光电化学水分解电池.  相似文献   

11.
采用旋涂法在FTO(SnO_2∶F)导电玻璃衬底上沉积得到BiVO_4多孔薄膜用以光解水,改变前驱体的浓度和旋涂次数以调控薄膜的厚度。研究了电解液成分、膜层厚度及表面改性等因素对刚经历过退火处理的BiVO_4薄膜光电化学(PEC)性能的影响。结果表明:通过在电解液中添加适量的空穴吞噬剂Na_2SO_3,或对表面进行Co-Pi改性均能有效改善BiVO_4薄膜的PEC活性。这些措施均能有效抑制固液界面处的载流子复合反应。经Co-Pi改性的BiVO_4薄膜在0.6 V(vs SCE)偏压下,0.1 mol·L~(-1) Na_2SO_4+0.1mol·L~(-1)Na_2SO_3的电解液中展现出最高的光电流密度(4.3 m A·cm~(-2))。此外,选用一个代表性BiVO_4薄膜作为光阳极制备了一个PEC生物传感器,在检测谷胱甘肽(GSH)上表现出比较高的灵敏度。本研究证实了BiVO_4薄膜的PEC性能严重依赖着光俘获效率和载流子输运过程。  相似文献   

12.
随着现代工业的迅猛发展和化石燃料的过量使用,全球范围内能源和环境问题日益严峻,因此利用丰富的太阳光能分解水来直接制取清洁的氢气具有诱人的应用前景.目前,聚合物半导体石墨相氮化碳(g-C_3N_4)因其廉价、稳定、不含金属组分和独特的电子能带结构已被广泛应用于光解水产氢研究.然而,氮化碳具有结晶度差、光生载流子易复合的缺点.众所周知,Z型体系可以很好地减少电子和空穴的复合问题.同时,催化剂只需分别满足光解水过程的一端,这使得半导体光催化剂的选择非常丰富,可以大大拓宽材料体系.因此,将g-C_3N_4运用到Z型体系中的研究得到了广泛关注.然而,这些研究多集中在如何增强g-C_3N_4的产氢能力方面,对实现水的完全分解的研究鲜见报道.本实验设计了这样一种Z型体系:使用掺Zn的g-C_3N_4作为产氢端,BiVO_4作为产氧端,Fe3+/Fe2+作为氧化还原对.实验结果表明,该体系可以在全波段下实现水的完全分解(氢氧比为2:1),并且保持相当高的稳定性.实验所使用的氮化碳为固相法烧结尿素制得,Zn的掺杂采用浸渍法,同时通过水热法合成BiVO_4,使用Pt作为助催化剂.通过搭建含有不同组成成分的Z型体系,将它们的性能和表征结果进行比较分析.通过XRD,UV-Vis,SEM和XPS等测试手段对催化剂进行表征.XRD分析结果表明成功合成了掺杂Zn的石墨相氮化碳.UV-Vis则显示随着Zn浓度的提高,吸收边发生变化.通过改变掺杂Zn的浓度,得到了能够实现完全分解水的Z型体系,其最佳掺杂比例为:Zn Cl2和氮化碳的质量比为1:10.为了排除单催化剂和Pt颗粒对完全分解水性能的影响,分别作了单独产氢端、单独产氧端、预负载Pt和光沉积Pt的性能测试.从SEM中没有发现g-C_3N_4和BiVO_4的异质结结构.这些结果表明所搭建的是典型的利用氧化还原离子对为中间电子传输载体的Z型体系,经长达12 h的持续测试证明其具有较高的稳定性.为了研究Zn在构建Z型中所起的作用,分别采用文献中报道的原位和浸渍法实现Zn的掺杂.对这两种掺杂方式的性能测试表明,只有采用浸渍法时,所构建的Z型体系具有完全分解水的能力.对这两种方法得到的掺Zn氮化碳进行表面化学组成和价态(XPS)的分析.结果显示,两种掺杂方法都可以通过形成Zn=N键的形式实现Zn的掺杂,但浸渍法使Zn在g-C_3N_4表面分布更均匀,同时对氮化碳原本三嗪环的破坏较小,因此具有更好的还原能力,可以与BiVO_4匹配以构成Z型体系.实验通过采用掺杂Zn的氮化碳作为产氢催化剂,BiVO_4作为产氧催化剂,Fe3+/Fe2+作为氧化还原中间体,构建了典型的Z型体系.该体系在Zn的掺杂浓度为10%时能够实现长时间稳定的完全分解水.  相似文献   

13.
近年来,随着能源和环境问题日益凸显,新型可再生能源的开发利用意义重大.其中开发高效的光阳极材料用于光电催化全分解水引起了广泛的研究兴趣.纳米WO_3由于其禁带宽度适中,被证明是一种效果良好的光催化分解水产氧的催化剂,但无法直接用于催化析氢.若将其作为光阳极材料,在施加较低偏压下可用于高效光电催化全分解水.纳米WO_3电极的众多制备方法中,电化学氧化法因其方法简单,高效,制备成本低而具有重要的应用价值.然而,通常情况下电化学氧化法得到的纳米WO_3薄膜多为无规则形貌或多孔膜.本文发展了一种简单的阳极氧化法,通过优化调变其制备过程中的氧化时间,氧化电压,电解质离子浓度以及焙烧温度,确定了最佳制备条件(1 h,40 V,0.15 mol/L NH4F,400℃)时样品的光电催化全分解水活性最高,其光电催化析氢和析氧的速率分别达到了3.93和1.96μmol/cm~2/h,且量子效率达5.23%的,此NAs-WO_3/W薄膜的光电催化活性和稳定性远超商业WO_3/W薄膜.场发射扫描电镜结果显示,所制样品是一种新型的形貌规整的类纳米管阵列状WO_3薄膜.并进一步通过X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、紫外可见光谱、光电转换效率、光电流测试、和交流阻抗等手段研究了其晶体结构、表面化学组成、光学及光电化学性质.同时通过实验与计算获得了NAs-WO_3/W薄膜在420 nm单色光照下的表面空穴分离率,并与商业WO_3制备得到的WO_3/W薄膜进行了相关对比.XRD,HRTEM和XPS结果表明,所制NAs-WO_3/W薄膜是由暴露(020)和(202)晶面的单斜晶相WO_3构成.交流阻抗测试表明,NAs-WO_3/W的交流阻抗值要远小于商业WO_3/W,说明其光生载流子分离效果要比商业化的WO_3/W高;且NAs-WO_3/W薄膜的表面空穴分离率是商业WO_3/W薄膜的三倍.由此可见NAs-WO_3/W具有优异的光电催化性能(高光电转换效率和空穴分离效率),能有效应用于可见光全分解水反应,这主要归因于其类纳米管阵列的特殊一维结构、高结晶度的单斜态WO_3及WO_3与金属W片之间的强相互作用.本文为高效光电转换材料的制备提供了新的技术与途径.  相似文献   

14.
光催化作为太阳能利用领域的研究热点引起了广泛的关注.其中,光电化学技术能够通过分解水提供清洁的氢能源,因此被认为是一种潜在的新能源制造方式.在光电化学分解水产氢的过程中,最重要的是高效光电极的制备.一系列n型半导体材料已被广泛地报道并用作光阳极,如BiVO_4,ZnO,Fe_2O_3等.然而对于光阴极材料,其可选择性则较少.CuBi_2O_4是一种天然矿物,具有廉价易得以及化学性质稳定的特性,而且是一种p型半导体材料,因此能够用于制备光阴极;另外因为其强的可见光响应(1.70 eV),所以具有广泛的应用前景.目前对于CuBi_2O_4光阴极研究主要集中在合成和理论计算方面,而对于如何促进界面处的载流子分离研究较少.本文通过一种简单的电沉积方法成功制备出CuBi_2O_4光阴极,然后利用非晶TiO_2和助催化剂Pt进行修饰后将其用于光电化学产氢.由于形成了CuBi_2O_4/TiO_2 p-n结,因此其光阴极活性得到增强.新的Pt/TiO2/CuBi_2O_4光阴极在0.60V偏压处的光电流为0.35 mA/cm~2,其数值约为Pt/CuBi_2O_4光阴极的两倍.XRD结果表明,我们制备的CuBi_2O_4为纯相且结晶性较好,其表面修饰的TiO_2为非晶相的.SEM结果表明,CuBi_2O_4电极层由100-150nm的颗粒构成.紫外-可见吸收光谱表明,制备的CuBi_2O_4光电极拥有良好的可见光吸收性质,而且TiO_2修饰未对CuBi_2O_4的光吸收产生明显的影响.XPS结果表明,修饰TiO_2并未对CuBi_2O_4电极造成成分上的破坏.光电化学测试表明,修饰TiO_2层厚度和结晶性会影响光电极的最终活性.修饰四层TiO_2和退火200℃的样品具有最好的活性.另外稳定性测试也表明,修饰非晶TiO_2的CuBi_2O_4光阴极具有良好的稳定性.在IPCE测试中,Pt/TiO_2/CuBi_2O_4光阴极在其光响应范围内均比Pt/CuBi_2O_4光阴极表现出更高的效率.阻抗结果测试中Pt/TiO_2/CuBi_2O_4光阴极具有更小的阻抗,这表明其载流子传输更加高效.在Mott-Shetty测试中,Pt/TiO_2/CuBi_2O_4和Pt/CuBi_2O_4光阴极都表现出p型半导体性质,但是Pt/TiO_2/CuBi_2O_4具有更负的平带电位,这表明修饰的TiO_2仍具有n型半导体材料的特性,并与p型的CuBi_2O_4形成p-n结,从而促进了载流子分离效率.  相似文献   

15.
近年来,光电化学分解水制氢(PEC)技术为未来的能源需求提供了一个清洁、可再生的途径.赤铁矿(α-Fe_2O_3)因其带隙小(~2.1 eV)、无毒、存储量大以及光电化学稳定等优点而受到广泛关注.然而,导电性差、空穴扩散长度短(2~4 nm)、表面水氧化动力学缓慢、激发态寿命短(10×10~(-12) sec)等缺点,极大地限制了Fe_2O_3光阳极的光转换效率.我们回顾了赤铁矿光阳极用于PEC水氧化的研究进展,主要集中在促进Fe_2O_3光阳极表面的水氧化反应,体相的电荷分离和迁移以及提高光吸收能力.最后,对Fe_2O_3光阳极面临的挑战和未来的发展进行了展望.  相似文献   

16.
光电化学(PEC)分解水制氢,已成为将太阳能转化为绿色可持续氢能极具潜力的途径之一.目前,单斜相钒酸铋(BiVO4)因其合适的带隙及能带位置、无毒且含量丰富等优点,被认为是理想的光阳极材料.然而, BiVO4较低的载流子迁移率(4×10-2 cm2V-1s-1和较短的空穴扩散长度(<100 nm),导致BiVO4光阳极电子-空穴复合较严重,极大地限制了其性能.为克服上述缺陷,除减小BiVO4纳米颗粒的粒径以匹配其较短的空穴扩散长度,使空穴能有效转移到其表面参与水氧化反应;或在其表面沉积一层薄的氧气释放反应助催化剂(OEC)层以增强水氧化反应动力学以外,还应关注如何进一步有效提升BiVO4电荷分离效率.因此,在BiVO4和氟掺杂的氧化锡(FTO)电极界面之间插入另一种半导体材料构筑异质结以促进BiVO4电荷分离,进一步提升BiVO4<...  相似文献   

17.
二维层状半导体材料与其体相堆积结构相比表现出独特的性质,有望在纳米材料科学领域取得新的突破.基于对太阳能利用的研究,二维半导体光催化材料引起了研究者的广泛关注.诸多半导体材料已被设计合成二维纳米片结构应用于光催化领域,如MoS_2,WS_2,SnS_2和TiO_2等.石墨相氮化碳(g-C_3N_4)是一种典型的非金属二维聚合物半导体.二维层状结构的组成使得g-C_3N_4纳米片能够表现出优异的光电性质.然而,其合成目前仍然存在很大困难.目前已报道的单层或多层g-C_3N_4的制备主要有超声辅助溶剂剥离法、热处理法、插层法和电化学合成法等.但这些方法存在合成复杂和引入结构缺陷等不足.另外,在体相组成中插入孔结构也能够提高g-C_3N_4的光催化活性.目前常用的方法主要是模板法.然而,在这些生孔过程中往往引起聚合度降低,增加长程无序度,不利于光生载流子的传输.因此,如果将多孔结构引入g-C_3N_4纳米片,同时提高其聚合度结构,将在很大程度上提高其光催化性能.本文利用直接氨气热聚合的方法,将硫氰酸铵进行高温热处理,一步法合成出较高聚合度的多孔g-C_3N_4纳米片,在可见光照射下表现出较高的产氢活性和稳定性.采用X射线衍射(XRD)、红外光谱(FTIR)、荧光光谱(PL)和电子顺磁共振(EPR)等方法对多孔g-C_3N_4纳米片结构进行了详细表征.在助催化剂Pt存在下,采用可见光照射(420 nm)分解水产氢的方法评价了其光催化性能.结果表明,热处理温度对产物结构及性能具有较大影响.XRD结果表明,在450 ℃热处理,硫氰酸铵未完全聚合,与前期氮气热处理的结论不同.当热聚合温度上升至500 ℃,石墨相结构形成.至600 ℃时,石墨相的层间距缩小,且聚合度没有明显下降.这表明氨气气氛抑制了原料分解,提高了分解聚合温度,同时增加了产物的聚合度.FTIR结果表明,热聚合温度对产物C–N共轭结构改变不大,但在810 cm–1处的峰位向长波数移动,表明七嗪环单元含量增加,再次证明高的热聚合温度没有造成明显的结构分解,反而促进了聚合结构的形成.扫描电镜与氮气吸脱附分析表明,随着聚合温度升高,产物粒子尺寸变小,形貌呈现层状分布,并伴随多孔状的产生,因此比表面积和孔体积显著增大,吸收带边发生蓝移.PL和EPR结果表明,聚合温度从500增至600 ℃,样品光生载流子的复合速率下降,导带离域电子密度增加,从而有利于光催化性能的提高.光解水产氢性能测试表明,聚合温度升高有利于催化剂产氢速率提高;600 ℃所得样品的产氢速率达340μmol/h.进一步分析表明,产氢速率与比表面积基本成正相关关系,说明层状多孔结构的形成是影响产氢性能的重要因素.经过多轮循环测试,其产氢性能保持稳定而没有显著下降,表明其活性稳定性良好.  相似文献   

18.
化石燃料的使用已经引起了严重的环境问题,例如空气污染和温室效应。同时,化石燃料作为不可再生能源无法一直满足人们不断的能源需求。因此,开发清洁可再生能源非常重要。氢是一种清洁无污染的可再生能源,可以缓解整个社会的能源压力。地球在一秒钟内接收到的太阳光能为1.7×10~(14) J,远远超过了人类一年的总能源消耗。因此,将太阳能转化为有价值的氢能对于减少对化石燃料的依赖具有重要的意义。自1972年藤岛昭和本多健一首次报道Ti O_2光催化剂以来,人们发现半导体可以通过电或光驱动水分解产生清洁无污染的氢气。通过这种方式产氢不仅可以替代化石燃料,还可以提供环保的可再生氢能源,受到了人们的广泛关注。光电化学(PEC)水分解可以利用太阳能生产清洁、可持续的氢能。由于光阳极上的析氧反应(OER)缓慢,因此总的能量转换效率仍然很低,限制了PEC水分解的实际应用。助催化剂对于改善光电化学水分解性能是必要的。贵金属氧化物已被证明是最有效的OER催化剂,因为它们在酸性和碱性条件下具有很高的OER活性。然而,这些贵金属氧化物成本高和储量低,极大地限制了它们的实际应用。因此,开发高活性和低成本的OER助催化剂非常重要。迄今为止,对第一周期过渡金属(例如,Fe,Co,Ni和Mn)助催化剂的合成研究比较集中。其中,铁在地球上含量丰富,并且毒性比其他过渡金属低,使其成为良好的助催化剂。另外,铁基化合物具有半导体/金属的特性和独特的电子结构,可以改善材料的电导率和对水的吸附性能。目前,各种具有高催化活性的铁基催化剂已经被设计来提高光电化学的水氧化效率。本文简要概述了羟基氧化铁,铁基层状双氢氧化物和铁基钙钛矿等的结构、合成和应用方面的最新研究进展,并讨论了这些助催化剂在光电化学水氧化的性能。  相似文献   

19.
采用一步滴涂法在掺氟二氧化锡(FTO)导电玻璃上制备了Bi1-xFexVO4(x=0, 0.05, 0.10, 0.25, 0.40)薄膜, 表征了其结构、 形貌、 光学以及光电化学方面的性质. 结果表明, 掺入Fe后Bi1-xFexVO4薄膜的光电流密度与 BiVO4薄膜相比均有所提高, 其中25% Fe-BiVO4薄膜表现出最优的光电化学性能. 在0.1 mol/L磷酸缓冲溶液(pH=7.0)中, 1.23 V(vs. RHE)电势下25% Fe-BiVO4薄膜的光电流密度为0.50 mA/cm2, 与BiVO4薄膜的0.15 mA/cm2相比提高了3倍多. 结合X射线衍射(XRD)、 拉曼光谱(Raman)和X射线光电子能谱(XPS)表征结果证实Fe3+以FeVO4的形式存在于Bi1-xFexVO4薄膜中, 形成了BiVO4/FeVO4复合物薄膜. 紫外-可见光谱(UV-Vis)结果显示, 所有Bi1-xFexVO4薄膜的禁带宽度均为2.4~2.5 eV. 25% Fe-BiVO4薄膜光电化学性能的提升主要归因于光生载流子转移效率(ηtrans)和分离效率(ηsep)的提高. 能级结构图表明, BiVO4和FeVO4之间可以形成Type Ⅱ型能级结构排列, 可以促进光生载流子的分离与转移, 是25% Fe-BiVO4薄膜光电化学性能提升的内在机理.  相似文献   

20.
近几十年来,光电化学分解水制氢作为一种洁净的、能持续利用太阳能的技术受到极大关注.在众多光催化材料中,P型半导体氧化亚铜(Cu_2O)被认为是最有前途的可见光光电分解水材料之一.理论上,它的光能转换为氢能的效率可达到18.7%.然而,目前所报道的Cu_2O光转换效率远远低于此值;同时,纯Cu_2O在光照条件下的稳定性较差.研究表明,Cu_2O与其它半导体复合可以增强其光电转换效率和提高稳定性.如Cu_2O和能带匹配的石墨相氮化碳(g-C_3N_4)复合后,光催化性能和稳定性都有较大提高.但目前所报道的Cu_2O/g-C_3N_4复合物几乎都是粉末状催化剂,不便于回收和重复使用.本文首先采用电化学方法在FTO导电玻璃上沉积Cu_2O薄膜,采用溶胶凝胶法制备g-C_3N_4纳米颗粒材料,然后采用电化学法在Cu_2O薄膜表面沉积一层g-C_3N_4纳米颗粒,得到了Cu_2O/g-C_3N_4异质结膜.分别利用X射线粉末衍射(XRD)、高分辨透射电子显微镜(HRTEM)、扫描电子显微镜(SEM)、紫外可见光谱(UV-Vis)和光电化学分解水实验分析了Cu_2O/g-C_3N_4异质结的组成结构、表面形貌、光吸收性能及催化剂活性和稳定性.XRD和HRTEM表征显示,本文成功合成了Cu_2O/g-C_3N_4异质结材料,SEM图表明g-C_3N_4纳米颗粒在Cu_2O表面分布均匀,大小均一.可见光光电化学分解水结果显示,异质结薄膜的光电化学性能比纯的Cu_2O和g-C_3N_4薄膜材料有极大提高.当在Cu_2O表面沉积g-C_3N_4的时间为15 s时,得到样品Cu_2O/g-C_3N_4-15异质结膜,其在-0.4 V和可见光照射条件下,光电流密度达到了-1.38 mA/cm~2,分别是纯Cu_2O和g-C_3N_4薄膜材料的19.7和6.3倍.产氢速率也达到了0.48 mL h~(-1)cm~(-2),且产氢和产氧的速率之比约为2,说明此异质结材料在可见光作用下能全分解水.经过三次循环实验,光电化学分解水的效率仅降低10.8%,表明该材料具有良好的稳定性.根据UV-Vis表征和光电化学性能对比,Cu_2O/g-C_3N_4-15的光电性能最好,但其光吸收性能并不是最好,说明光电化学性能与光吸收不是成正比关系,主要是由于Cu_2O和g-C_3N_4两个半导体相互起到了协同作用.机理分析表明,Cu_2O/g-C_3N_4异质结薄膜在光照下,由于两者能带匹配,Cu_2O的光生电子从其导带转移到g-C_3N_4的导带上,g-C_3N_4价带上的空隙转移到Cu_2O的价带上,从而降低了光生电子和空隙的复合,提高了其光催化性能.由于g-C_3N_4的导带位置高于H_2O(或H~+)还原为H_2的电势,Cu_2O的价带位置低于H_2O(或OH-)还原为O_2的电势,所以在外加-0.4V偏压和可见光照射条件下,Cu_2O/g-C_3N_4能全分解水,光生载流子越多,光电化学分解水的速率越大.综上所述,在Cu_2O薄膜上沉积g-C_3N_4后得到的异质结薄膜具有高效的光能转换为氢能性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号