首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
MnO_x/TiO_2催化剂由于具有优异的低温脱硝性能,已成为SCR催化剂的研究热点之一.我们通过浸渍法制备了一系列不同Mn负载量的nMnO_x/TiO_2(n=2.5%, 5%, 10%, 15%)(质量分数)催化剂,考察Mn负载量对催化剂脱硝性能的影响.利用N_2物理吸附, X-Ray Diffraction (XRD), Scanning Electron Microscope(SEM),Temperature Programmed Reduction with H_2(H_2-TPR),Temperature Programmed Desorption with NH_3(NH_3-TPD)和X-Ray Photoelectron Spectroscopy (XPS)对其结构进行表征.结果表明,催化剂的脱硝性能随着Mn负载量(2.5%~15%)(质量分数)的变化呈现"火山型"曲线,当Mn负载量为10%(质量分数)时,催化剂的脱硝性能最佳. H_2-TPR和XPS结果表明nMnO_x/TiO_2催化剂上表面氧比例和表面Mn~(4+)浓度均随着Mn负载量的增大,先增大后减小,具体顺序为10MnO_x/TiO_(2 ) 15MnO_x/TiO_(2 )5MnO_x/TiO_(2 ) 2.5MnO_x/TiO_2,与脱硝性能顺序完全一致.进一步关联表面氧的比例与T_(50)发现,催化剂的表面氧的比例与T_(50)呈线性关系,即表面氧比例越高, T_(50)越小,脱硝活性越高. NH_3-TPD结果表明,弱酸酸量的增加有助于低温脱硝活性的提高.这些结果揭示了Mn负载量影响脱硝性能的作用规律,为今后开发高效的锰基低温脱硝催化剂提供了技术支撑.  相似文献   

2.
采用浸渍法制备了不同MnO_x负载量的SCR催化剂,检测其在中低温下的脱硝活性和抗SO_2中毒性能,并分析影响Mn_αTi_(1-α)催化剂中低温活性的机理。采用BET、XRD、XPS、NH_3-TPD和H_2-TPR对催化剂表征。研究表明,随着MnO_x负载量的增加,Mn_αTi_(1-α)催化剂最高脱硝活性温度区间向低温区移动,Mn_(0.1)Ti_(0.9)催化剂在200-385℃脱硝效率达80%以上。SO_2会造成Mn_αTi_(1-α)催化剂脱硝活性显著下降,且不可逆。当MnO_x负载量增加时,催化剂比表面积先增大后略微减小、H_2-TPR中Mn~(4+)峰面积增大、表面化学吸附氧增加,有利于NH_3-SCR反应在低温下的进行。Mn_αTi_(1-α)催化剂的酸性位点随MnO_x含量增加而增多,H_2还原峰出现温度较低,表明Mn_αTi_(1-α)催化剂具有良好的中低温氧化还原性。  相似文献   

3.
采用自发沉积法、共沉淀法及浸渍法制备MnO_x/TiO_2催化剂,通过XRD、TEM、N2吸附-脱附、XPS、H_2-TPR、NH_3-TPD等一系列表征手段研究MnO_x/TiO_2催化剂的结构与性质,并考察MnO_x/TiO_2催化剂低温NH_3-SCR性能。结果表明,自发沉积法制备的MnO_x/Ti O2(s)催化剂具有完全非晶态结构,Mn和Ti之间存在强相互作用,较共沉淀法制备的MnO_x/TiO_2(c)及浸渍法制备的MnO_x/Ti O2(i)表现出更强的氧化还原能力。MnO_x/TiO_2(s)具有较高的比表面积、较多的表面酸量,有利于NH_3的吸附与活化。且表面高浓度的Mn4+离子及吸附氧,有利于将NO氧化为NO2,促进发生"fast-SCR"反应,进而使其表现出优异的低温脱硝性能。MnO_x/TiO_2(s)催化剂在150℃时NO的转化率高达92.8%,在150-350℃NO的转化率保持在90%以上,此外其还具备较强的抗H_2O和SO_2毒化能力。  相似文献   

4.
TiO_2载体掺杂对Mn-Ce/TiO_2催化剂低温脱硝性能影响研究   总被引:1,自引:0,他引:1  
以TiO_2、TiO_2-Al_2O_3及TiO_2-SiO_2为载体,选取Mn为活性组分,Ce为活性助剂,采用分布共混法制备低温SCR催化剂,分析了TiO_2载体掺杂Al_2O_3、SiO_2改性后对Mn-Ce/TiO_2催化剂低温脱硝活性的影响,运用BET、SEM、XRD、H2-TPR以及NH_3-TPD等测试手段对催化剂进行了表征。结果表明,TiO_2载体经掺杂改性后,Mn-Ce/TiO_2催化剂的比表面积、孔结构参数以及表面孔结构形貌均得到改善和提高;Mn-Ce/TiO_2-Al_2O_3和Mn-Ce/TiO_2-SiO_2催化剂中TiO_2的结晶度均有不同程度降低;经TiO_2载体掺杂改性后的催化剂表面低温还原峰面积及催化剂表面酸性位种类及酸性大小显著改善,这都有助于提高催化剂的脱硝活性。通过对TiO_2载体掺杂SiO_2和Al_2O_3改性后,催化剂的脱硝活性明显提高,反应温度在80-140℃时,催化剂SCR脱硝活性的顺序是:Mn-Ce/TiO_2-SiO_2M n-Ce/TiO_2-Al_2O_3M n-Ce/TiO_2。  相似文献   

5.
采用不同方法制备了一系列氧化锰八面体分子筛(OMS-2)催化剂,考察了制备方法对其低温NH3-SCR催化性能的影响,并采用BET、XRD、Raman、H2-TPR、XPS和TEM等手段对催化剂的物化性质进行表征。结果表明,OMS-2催化剂在50~150℃时其低温SCR活性明显优于MnOx催化剂,OMS-2催化剂在120℃时NOx转化率接近100%。此外,不同的制备方法对OMS-2催化剂的SCR脱硝活性影响明显。其中,固相法制备的OMS-2催化剂的SCR活性最佳。H2-TPR测试结果表明,OMS-2更容易发生氧化还原反应,MnOx还原峰对应的温度较高。XRD、TEM和XPS分析结果表明,低结晶度和高分散性的无定形催化剂有利于低温SCR反应,较高的表面晶格氧和无定形MnO2物种是OMS-2催化剂具有优异低温SCR活性的主要原因。  相似文献   

6.
在众多的氧化物类NH_3-SCR催化剂体系中,Mn基氧化物催化剂因具有极高的低温(≤473 K)脱硝性能而备受关注.其主要原因可能是Mn物种具有丰富的可变价态,作为活性组分的MnO_x能够提供自由电子.大量研究发现,由于不同金属元素间协同作用的存在,复合金属氧化物的催化脱硝活性普遍优于单金属氧化物类催化剂.为了抑制MnO_x在锻烧过程中的烧结,提高MnO_x的催化活性,一系列过渡金属氧化物,如Fe,Cu,Ni和Cr等的氧化物,被用来作为改性剂加入到MnO_x催化剂中.近年来,很多研究者将稀土元素作为改性剂加入到MnO_x催化剂中,并发现稀土金属氧化物的添加可以改善催化剂的活性、选择性、热稳定性及抗毒性能,是良好的添加助剂,其中对Ce的关注度颇高.而储氧性能是CeO_2最重要的性质,CeO_2对氧气的存储和释放可以通过Ce~(4+)和Ce~(3+)两种价态之间的变化实现.文献研究表明,将CeO_2加入到锰氧化物材料中,能够提高锰氧化物在程序升温脱附过程中氧的脱附量,并且在低温条件下能够为锰氧化物提供氧,从而对锰氧化物的氧化态产生影响.此外,我国拥有丰厚的稀土Ce资源储备,使得锰铈复合氧化物在吸附脱除NO_x方面得到广泛应用.催化剂作为选择性催化还原(SCR)工艺的核心,现阶段的研究重点主要集中于新型低温高活性催化剂的研究,如活性组分、载体组分、焙烧温度、焙烧时间及焙烧升温程序等,这表明焙烧过程对于催化剂性能的重要性.然而,在催化脱硝领域,对焙烧气氛的研究极少,但借鉴其他领域对焙烧气氛的研究,确有研究者证实焙烧气氛对材料的颗粒大小、缺陷浓度、价态及物相组成等有着显著的影响,进而影响材料的活性.我们课题组曾研究了焙烧气氛对MnO_x/TiO_2脱硝性能的影响,并发现惰性气氛中焙烧的催化剂表现出最佳活性,然而对于催化剂催化性能增强的原因并未深入探究.在前期研究基础上,以MnO_x和CeOx为活性组分,采用浸渍法制备得到Ce-Mn/TiO_2催化剂,通过X射线衍射(XRD)、氢气程序升温还原(H_2-TPR)、热重(TG)、扫描电子显微镜(SEM)、氨气程序升温脱附(NH_3-TPD)和X射线光电子能谱(XPS)等表征手段系统地研究了MnO_x和CeOx担载于TiO_2表面制成的催化剂在不同气氛(N_2,空气和O2)中焙烧后的催化性能和物相结构.XRD,TG和H_2-TPR测试结果表明,在N_2气氛中焙烧有利于催化剂氧化度与结晶度的降低,催化剂中主要存在两种主要活性成分:大量的Mn2O3和少量的Mn3O4.SEM图揭示了在N_2气氛下焙烧能够有效抑制晶粒长大,促进颗粒分散.NH_3-TPD结果表明,N_2气氛下焙烧的催化剂拥有更多的表面酸性位点,从而有利于反应气在催化剂表面的吸附和活化.结合XPS分析结果与脱硝活性测试结果,较低价态的MnO_x以及较高的表面活性氧浓度(Oα)更有利于NH_3-SCR反应的进行.不同焙烧气氛下0.20Ce-Mn/TiO_2催化剂(Ce:Ti摩尔比为0.20)上NO转化率顺序如下:N_2(94%)空气(85.6%)O2(75.6%).以上结果清晰地表明N_2焙烧气氛显著提升了催化剂的脱硝活性.  相似文献   

7.
采用浸渍法、溶胶凝胶法和水热法制备了一系列V-Mo/TiO_2催化剂,考察了制备方法对催化剂脱硝性能及抗SO_2/H_2O性能的研究。并运用XRD、BET、NH_3-TPD、H_2-TPR、XPS等方法对催化剂的理化性能进行了表征,结果表明,溶胶凝胶法制备的催化剂具有较小的晶粒粒径,较大的比表面积和孔容,较多的表面酸量,较强的氧化还原能力以及较高的V~(4+)和表面活性氧,因此,3%V_2O_5-6%MoO_3/TiO_2(sol-gel)催化剂在80-360℃,表现出最佳的脱硝效率;引入10%H_2O和0.03%SO_2后,NO转化率仅下降7个百分点,表现出最佳的抗SO_2/H_2O性能。  相似文献   

8.
考察了SO_2对Mn-Ce/TiO_2低温脱硝催化剂活性的影响,利用XRD、BET、SEM和XPS对其毒化作用的原因进行分析。结果表明,SO_2对催化剂活性有明显的抑制作用,使NO_x去除率由84%降至42%左右。主要是SO_2的加入造成催化剂比表面积减小,孔径为5-10 nm的孔数量减少,且催化剂晶相由锐钛矿型转化成金红石型结构,活性组分MnO_x发生晶化现象,破坏了Mn-Ti间的强相互作用。催化剂理化性质的变化造成吸附态氧转化为晶格氧的路径受阻、MnO_2含量减少和CeO_x储氧功能减弱,并且产生氧阻效应而使NO吸附和解吸受阻,造成催化剂活性降低。同时生成的硫酸铵盐在催化剂表面沉积,覆盖了催化剂表面的Lewis酸性位,使其对NH_3吸附能力减弱。  相似文献   

9.
郭志敏  袁坚 《分子催化》2016,30(6):547-556
采用浸渍法制备了V_2O_5-WO_3/TiO_2催化剂,并通过浸渍不同浓度的Na_2SO_4和NaCl,研究了不同的钠盐种类及含量对催化剂NH_3-SCR反应活性的影响,以考察催化剂的抗碱性,并采用BET、XRD、XPS、FT-IR和NH_3-TPD等测试技术对催化剂进行了结构与性能表征.研究结果表明钠盐降低了催化剂的比表面积,导致催化剂表面V~(5+)=O和V-OH酸性位点数量以及表面化学吸附氧含量降低,从而降低了催化剂的反应活性.催化剂钠盐中毒后NO转化率显著降低,脱硝温度窗口变窄.  相似文献   

10.
采用浸渍法制备了MnO_x/Al_2O_3低温脱硝催化剂,研究了Mn的含量对MnO_x/Al_2O_3催化剂低温烟气中NOx脱除率的影响,并通过XRD、SEM、BET、XPS、NH_3-TPD和H_2-TPR等手段对催化剂进行了表征.结果表明,当Mn含量为9%,空速为45 000 h-1时,MnO_x/Al_2O_3催化剂NO_x脱除率最高,在220℃时达79%;9MnO_x/Al_2O_3催化剂表面MnO_x氧化物分散较均匀,且稳定性及抗H_2O性能较好,但抗SO_2性能有待提高;MnO_x/Al_2O_3催化剂孔径主要分布在4~20 nm范围内,Mn含量对催化剂孔径变化影响较小;催化剂中活性组分Mn主要以Mn~(3+)和Mn~(4+)的形式存在;Mn~(4+)和Oα含量增加有利于NO_x的脱除;且添加Mn后,活性酸位点的数量增长,增强了催化剂还原能力,促进了NO_x脱除率的增加.  相似文献   

11.
考察了Pb对Mn-Ce/TiO2低温选择性催化还原(SCR)脱硝活性的影响,并对Pb中毒的催化剂进行了再生;结合氮吸附、SEM、XRD、FT-IR、H2-TPR和NH3-TPD等表征结果,研究了Mn-Ce/TiO2催化剂Pb中毒和再生活性恢复的原因.结果表明,Pb对Mn-Ce/TiO2催化剂脱硝活性有明显的抑制作用;当...  相似文献   

12.
采用浸渍法制备了五种掺杂不同比例的Ho的低温选择性催化还原(SCR)催化剂Mn0.4Ce0.07Hox/TiO_2。研究了Ho的引入对于Mn-Ce/TiO_2催化剂低温脱硝性能的影响,并采用XPS、XRF、BET、XRD、NH3-TPD等手段对催化剂的物理化学性质进行表征。结果表明,掺杂适量的Ho能够有效提高Mn-Ce/TiO_2催化剂的低温脱硝性能,当Ho/Ti掺杂比例为0.1时催化剂Mn0.4Ce0.07Ho0.1/TiO_2活性表现最佳,在200℃左右催化效率达到最高,为91.17%,在140-240℃催化效率达到80%以上。结果表明,Ho的掺杂能够增大催化剂的比表面积,提高催化剂化学吸附氧的浓度以及Ce的附着量。  相似文献   

13.
以核壳结构Al2 O3-TiO2为载体,V2 O5为活性组分,WO3为助催化剂,通过挤压成型制备核壳结构Al2 O3-TiO2复合载体脱硝催化剂.本文通过分析催化剂BET、XRD、抗压强度、抗硫酸盐腐蚀和脱硝反应NOx转化效率,考察核壳结构Al2 O3-TiO2复合脱硝催化剂物理化学性质.实验结果表明:核壳结构Al2 ...  相似文献   

14.
氮氧化物(NO_x)是大气污染的主要因素之一,对其排放的治理成为较为迫切的需求.氨气选择性催化还原法(NH_3-SCR)是目前减少NO_x排放中应用最为广泛的技术.目前,商业SCR催化剂主要是V_2O_5(WO_3,MO_3)/TiO_2,但其具有活性温度窗口窄、N2选择性低和对环境影响大等缺点.因此,新型的催化活性高且活性温度窗口宽的环境友好催化剂成为脱硝催化剂的研究热点.CeO_2因其独特的氧化还原性能和优异的储释氧能力在催化领域具有广泛应用,在NH_3-SCR中也研发出较多类型的铈基催化剂.我们课题组前期研发了具有优异脱硝性能的CeO_2(ZrO_2)/TiO_2催化剂,为拓展其应用范围,需要进行更深入的研究.理论上,Ti~(4+),Ce~(4+)以及Zr~(4+)离子的价态均高于Er~(3+),且离子半径相近.换言之,Er_2O_3能够与TiO_2以及CeO_2产生缺陷反应增大催化剂的缺陷浓度,进而提高催化剂的催化活性.本文以溶胶-凝胶法制备了一系列Er掺杂CeO_2(ZrO_2)/TiO_2催化剂,测试了样品的NH_3-SCR催化活性和N2选择性,并且在320°C下连续24 h测试了水蒸气、SO_2以及两者混合作用对催化剂活性的影响.使用X射线衍射(XRD)、N2等温吸附-脱附(N2-BET)、NH_3程序升温脱附(NH_3-TPD)、H2程序升温还原(H2-TPR)、光致发光光谱(PL)、电子顺磁共振(EPR)以及X射线光电子能谱(XPS)对催化剂进行了表征.XRD结果显示,Er掺杂后催化剂的结晶程度降低,且图谱中没有出现明显的Er_2O_3衍射峰,即Er在催化剂上有较好的分散度且掺杂抑制了催化剂的晶化.NH_3-TPD和H2-TPR结果表明,Er掺杂降低了酸强且提高了储释氧能力,催化剂的氧化还原能力则有所减弱.PL和EPR测试结果显示,掺杂后的催化剂氧空位浓度和Ti~(3+)浓度有所增加,与前期理论设计一致.XPS测试结果表明,掺入Er后催化剂的化学吸附氧含量和Ti~(3+)浓度增加,Ce~(3+)浓度基本不变,推测是CeO_2(ZrO_2)/TiO_2催化剂中掺入的Er主要与载体TiO_2,而不是与活性组分CeO_2或助剂ZrO_2产生缺陷反应的结果.CeO_2(ZrO_2)/TiO_2催化剂最高活性为94.28%,其活性温度窗口为230–390°C,掺入Er(Er:Ce=0.10:1)后,催化剂的整体活性尤其是350°C以下的催化活性具有明显提升,最高活性达到98.85%,活性温度窗口也拓展为220–395°C.单独的水蒸气对催化活性影响很小,SO_2会部分降低催化剂活性,而当两者混合作用时,催化剂活性下降最为显著,且Er掺杂后CeO_2(ZrO_2)/TiO_2催化剂的抗中毒能力有所增强.Er掺杂CeO_2(ZrO_2)/TiO_2催化剂显示出较好的抗硫抗水中毒能力以及较高的NH_3-SCR催化活性和N2选择性,应该是一种具有应用前景的SCR催化剂.Er掺杂降低了催化剂的酸强,抑制了TiO_2和铈锆固溶体的晶化,提高了Ti~(3+)和氧空位浓度并增强了储释氧能力,是CeO_2(ZrO_2)/TiO_2催化剂活性提高的主要原因.  相似文献   

15.
作为引起酸雨、光化学烟雾、雾霾等大气污染问题的主要根源,氮氧化物(NO_x)的防治已成为亟待解决的问题。选择性催化还原技术作为最成熟有效的脱硝技术,目前已经被广泛应用于各燃煤电厂.低温脱硝催化剂具有优秀的低温活性,使得脱硝装置可以安放在脱硫装置和除尘装置下游,受到了学者广泛的研究.目前低温脱硝催化剂的研究主要是对催化剂进行改性以提高催化剂的性能,已有许多研究报道了Sn、Ni、Co、Zr、Cr、Ni等对催化剂的改性影响.Ho作为一种改性元素被应用于光催化领域,能提高TiO_2的光催化能力.但Ho应用于脱硝领域的研究鲜有报道,其氧化物具有酸性位点有助于脱硝反应,因此研究Ho对低温SCR催化剂的改性作用具有重要意义.本文采用浸渍法制备Ho掺杂的Mn-Ce/TiO_2催化剂,研究了Ho的掺杂对于Mn-Ce/TiO_2催化剂低温脱硝性能的影响,同时还研究了烟气中的SO_2和H_2O对催化剂活性的影响,并利用XPS、XRD、H_2-TPR、NH_3-TPD等表征方法从物理性质和化学性质两方面对Ho改性的影响机理进行了研究.研究发现,Ho的掺杂能提高Mn-Ce/TiO_2催化剂的脱硝能力,有助于催化剂N_2选择性的提高.分析表明,Ho的掺杂有助于催化剂比表面积的提升,且能提高催化剂的酸性,有利于催化剂对NH_3的吸附,从而提高催化剂的性能.XPS表征结果表明Ho掺杂后的催化剂具有更高的化学吸附氧浓度和较高的Mn~(4+)/Mn~(3+)比例,使得脱硝反应更容易进行.改性后催化剂的抗水抗硫实验结果表明,Ho的掺杂能够提高催化剂的抗水抗硫性能.XRD结果表明,抗水抗硫实验后催化剂表面形成了硫酸铵盐,硫酸铵盐的形成会堵塞催化剂表面的活性位,限制脱硝反应的进行,从而影响催化剂的脱硝活性.同时,400℃下进行再生实验后的催化剂活性有所恢复,但是未能达到抗水抗硫实验前的活性,表明在抗水抗硫实验中催化剂表面形成了除硫酸铵盐以外的其他硫酸盐类.结合XPS和XRD表征结果,推断生成的盐类物质为硫酸锰和硫酸铈,从而导致再生后的催化剂的脱硝活性无法恢复到最初的活性水平.由此可以看出,硫酸盐的形成是催化剂在含硫气氛中失活的主要原因.  相似文献   

16.
合成了TiO_2-CeO_2柱撑黏土负载V_2O_5催化剂,通过XRD、氮气吸附脱附、TG、FT-IR、H_2-TPR、NH_3-TPD、XPS等方法对其物理化学性质进行了表征,研究了该催化剂在H2S选择性催化氧化反应中的活性。结果表明,负载5%V_2O_5的TiO_2-CeO_2柱撑黏土在180℃下催化效果最好,且尾气中不含SO_2。V_2O_5、TiO_2和CeO_2之间的相互作用提高了催化剂的活性,CeO_2提高了催化剂的热稳定性,同时提供大量晶格氧,加强了V_2O_5的氧化还原作用,降低了反应温度;TiO_2加强了VO_x和CeO_x的再氧化,降低了硫酸盐的覆盖率,从而降低了催化剂的失活速率。  相似文献   

17.
采用溶胶凝胶法制备了Mn-Ce/TiO_2低温SCR催化剂,考察了碱金属浓度与种类对催化剂活性的影响,探究了不同反应条件下钠盐沉积对活性保留分率的影响,利用SEM、BET、XRD和FT-IR对催化剂碱金属中毒原因进行了分析。结果表明,碱金属毒化后催化剂脱硝活性下降,钾中毒催化剂失活程度高于钠中毒的催化剂,2%钾中毒催化剂在160℃时NO去除率为62.0%,较新鲜催化剂下降29.2%。这主要因为碱金属毒化造成催化剂比表面积明显减小,且催化剂载体锐钛矿型TiO_2部分转化为金红石型,BET和SEM表征均说明碱金属沉积堵塞了催化剂表面的微孔。碱金属对Mn-Ce/TiO_2催化剂活性保留分率的影响表明,催化剂的颗粒粒径对其活性保留分率影响不大,碱金属含量减小、温度升高,Mn-Ce/TiO_2催化剂的活性保留分率增加,Na_2SO_4和NaCl对Mn-Ce/TiO_2催化剂的脱硝活性抑制作用大于KNO_3。  相似文献   

18.
考察添加不同含量Cl离子对浸渍法制备的Cl-V_2O_5-WO_3/TiO_2催化剂低温NO转化率的影响。随着Cl离子质量添加量从0增加到2.5%,Cl-V_2O_5-WO_3/TiO_2催化剂NO转化率先升高后降低,结合在含有SO_2和H2O的SCR实验结果,确定1.5%Cl-V_2O_5-WO_3/TiO_2为性能最优催化剂。在反应温度为149-362℃,NO转化率大于95%;在145-385℃,NO转化率大于90%。采用XRF、BET、XRD、TG、FT-IR和H2-TPR等方法表征了催化剂的物理化学性能和结构。结果表明,在反应气氛中加入SO_2和H2O后,催化剂比表面积和孔容均减小,副反应产物含有NH+4和SO_2-4。适量Cl离子可以抑制硫物种沉积,减少副反应产物生成,增强催化剂抗中毒能力。  相似文献   

19.
本文采用沉淀法合成了MnO_x和Fe_2O_3金属氧化物,进而经通过硫酸酸化处理,制备了SO_4~(2-)/MnO_x和SO_4~(2-)/Fe_2O_3两种催化剂,并考察了其NH_3选择性催化还原(NH_3-SCR)氮氧化物的性能.研究发现,经硫酸酸化后,SO_4~(2-)/MnO_x和SO_4~(2-)/Fe_2O_3的脱硝活性得到了显著提升.通过一系列表征证实,SO_4~(2-)可以和Fe_2O_3形成固体超强酸,从而显著提高Fe_2O_3的酸性,有利于吸附和稳定碱性还原剂NH_3;同时,MnO_x经酸化后,氧化性受到一定程度的抑制,有利于减少高温下氨氧化副反应的发生,从而改善MnO_x和Fe_2O_3的脱硝效果.本文还对改性后的SO_4~(2-)/MnO_x和SO_4~(2-)/Fe_2O_3进行组合,形成3种组合催化剂,发现组合催化可产生良好的协同效应,发挥了各自在低温和高温的脱硝优势,拓宽了高活性温度窗口(200~450℃;NO转化率90%),同时降低了副产物的生成,提高N_2的选择性.此外,将适宜于高温脱硝的SO_4~(2-)/Fe_2O_3放在前半段,而将适宜于低温脱硝的SO_4~(2-)/MnO_x放在后半段的组合方式,可获得最佳的脱硝效果,得到较高的N_2产率(80%,100~450℃),既有效地优化了Mn基催化剂的N_2选择性,又拓宽了Fe基催化剂的活性温窗.  相似文献   

20.
制备了不同Cu含量的K-CuZrO2催化剂.以乙醇缩合制备2-戊酮为探针反应,考察了催化剂的催化性能并对反应机理进行了探索;采用BET、XRD、H2-TPR、CO2-TPD、TEM以及XPS等表征技术对催化剂的体相结构、性质进行了研究.结果表明,当Cu含量为9%时,乙醇转化率达到极大值(99.5%),这是由于此时催化剂...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号