首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近红外光约占入射太阳能的 44% 以上, 为实现太阳能量的最大化利用, 近红外光 (NIR) 驱动的光催化技术成为科学研究的热点. 由于上转换荧光纳米材料 (UCNPs) 是优良的红外能量转换器, 合金半导体 ZnxCd1-xS 具有较好的化学稳定性以及生物相容性, 本文发展了一种简易的水热法, 将 UCNPs 和 ZnxCd1-xS 合金结合, 成功构建了 NIR 与可见光响应的核壳纳米结构. 由于这两种材料的晶格失配度较高, 很难直接外延生长, 我们通过引入非晶 TiO2将形成的催化剂纳米颗粒ZnxCd1-xS 紧紧束缚在 UCNPs 外面形成蛋黄-蛋壳结构, 在 NIR 光照下获得了较高的能量转换效率.首先, 在 UCNPs 外面外延生长一层 AA-Zn[(OH)4]2–复合物, 形成 UCNPs@AA-Zn[(OH)4]2–复合纳米结构, 然后在其核壳结构外面外延生长薄层的非晶 TiO2, 以稳定后续要制备的合金半导体 ZnxCd1-xS; 在水热条件下, UCNPs@AA-Zn[(OH)4]2–/TiO2与醋酸镉和硫脲反应, 形成 UCNPs@ZnxCd1-xS/TiO2复合材料. 在此, 我们选择β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%) 作为 NIR 的能量转换器. 样品的形貌、物相及化学组成分别采用场发射扫描电子显微镜、透射电子显微镜、X 射线衍射和原子吸收光谱法进行表征.研究表明, 我们成功制备了具有蛋黄-蛋壳结构的 UCNPs@ZnxCd1-xS/TiO2纳米颗粒. 此外, 非晶态 TiO2将 UCNPs 与ZnxCd1-xS 紧密结合, 对最终样品 UCNPs@ZnxCd1-xS 核壳纳米粒子的形成起到重要作用. 而且, 合金 ZnxCd1-xS 的化学组成可通过调整镉源和锌源的用量进行调节. 所制备的 UCNPs@ZnxCd1-xS 核壳纳米粒子在 NIR 光线或模拟太阳光照射下显示出高效的光化学还原 Cr(VI) 性能. 溶液中 70% 以上的 Cr(VI) 在 NIR 光照射 30 min 后被还原为 Cr(III). 本研究将为环境污水处理和太阳能利用提供一种可供选择的策略, 且所制的复合纳米结构在肿瘤治疗、药物释放和能量转换等领域也有着潜在的应用价值.  相似文献   

2.
Aqueous colloidal dispersions containing Znx Cd1‐x S quantum dots (QDs) of different x compositions were prepared by precipitating zinc and cadmium acetates with sodium sulphide,in the presence of a cetyltrimethylammonium bromide stabilizer.Ultraviolet‐visible absorption spectroscopy was used to determine the transition energies of the QDs,which in turn were used to calculate their sizes,which depended on their composition.The QD size decreased with increasing Zn content.The photocatalytic activity of the Znx Cd1‐x S QDs was studied by the decomposition of methylene blue under ultraviolet irradiation,at a maximum intensity at 365 nm (3.4 e V).Three different photo‐catalytic activity regions were observed,which depended on the Zn content.The quantum levels of the QDs could be excited by incident irradiation,and influenced the resulting photocatalytic activity.Maximum photocatalytic activity was achieved at x = 0.6,where the QD transition energy was equal to the irradiation photon energy.The photocatalytic efficiency of the QDs depended on their surface area and arrangement of quantum levels,because of the quantum size effect.  相似文献   

3.
采用简单的气相沉积法,合成了不同组成的Znx Cd1-x S(0x1)纳米线.利用扫描电子显微镜、透射电子显微镜和电子能谱研究了所制得的纳米线的表面形貌和组成.该方法以Au为催化剂,简单控制起始物质的相对用量和沉积温度,可以获得可控的Zn/Cd比例.X射线衍射结果表明所制得的Znx Cd1-x S纳米线具有纤维锌矿的单晶结构.根据制得纳米线的表面形貌讨论了纳米线可能的生长机理为"底部生长"机理.利用拉曼光谱和光致发光光谱研究了Znx Cd1-x S纳米线的光学性质,其纵向光学(LO)声子的拉曼位移频率随着组成的变化在ZnS和CdS的拉曼位移频率之间连续变化.光致发光光谱中同时存在带边发光和缺陷发光.Znx Cd1-x S纳米线的带间跃迁的频率可随着组成的调节而调节,纳米线的禁带宽度介于ZnS(3.63 eV)和CdS(2.41 eV)的禁带宽度之间.  相似文献   

4.
由于近红外光在太阳光谱中占44%,因此,近红外光驱动的光催化剂的研制具有十分重要的意义.上转换发光材料可将低能量的近红外光子转换为高能光子,这种高能光子可以通过构建荧光共振转移系统将能量转移并活化量子效率较高的半导体材料,对于太阳能的转化利用具有潜在的应用前景.在本文中,通过胶体化学的过程在电纺丝制备的内嵌CdS纳米颗粒以及上转换荧光纳米颗粒(UCNPs)的二氧化硅复合纳米纤维表面外延生长一层二氧化钛层,通过高温煅烧得到二氧化钛复合纳米管.我们通过二氧化硅结构将CdS纳米颗粒与上转换荧光纳米颗粒紧紧束缚在一起,实现较高的荧光共振能量转移.而且,选择β-NaYF_4:Yb(30%),Tm(0.5%)@NaYF_4:Yb(20%),Er(2%)作为纳米能量转换器,替代以前研究工作中使用的β-NaYF_4:Yb(30%),Tm(0.5%)或者β-NaYF_4:Yb(30%),Tm(0.5%)@NaYF_4纳米颗粒,来进一步提高近红外光的转换效率.通过透射电子显微镜照片很清楚的观察到制备的Ti O2复合纳米管内部内嵌有大量的CdS与上转换纳米颗粒.通过X-射线衍射以及X-射线光电子能谱能仪器对产物的物相以及表面的化学组成进行了细致的表征.结果显示,通过本实验方法已经成功获得了Ti O2复合纳米管.用稳态与瞬态荧光仪研究了最终样品的荧光性质.研究结果揭示,与上转换纳米颗粒以及二氧化硅复合纳米纤维相比,复合二氧化钛纳米管可以将上转换荧光纳米颗粒的(UV-Vis)部分荧光完全淬灭了.特别是,铒离子的荧光(650 nm)也被有效淬灭转移,说明本研究采用β-NaYF_4:Yb(30%),Tm(0.5%)@NaYF_4:Yb(20%),Er(2%)纳米能量转换器,可以提高近红外光的转换效率,紫外-可见吸收光谱证实,这种二氧化钛纳米管在紫外-可见光区中的吸收光谱与β-NaYF_4:Yb(30%),Tm(0.5%)@NaYF_4:Yb(20%),Er(2%)纳米颗粒的荧光光谱具有较大的重叠,使得上转换荧光纳米颗粒与CdS以及二氧化钛组分之间的荧光共振转移的效率大大提高,进而会显著提高光催化的效果.以罗丹明染料作为污染物为模型,我们研究了罗丹明染料在氙灯下或者近红外光光照下的光催化分解实验.研究结果表明,90%的罗丹明染料分子在20 min内就被降解掉,效率高于其它的近红外光催化剂.上转换荧光纳米颗粒的能量转换效率可以得到大幅度提高,本研究工作中制备的光催化剂利用太阳能的效率将会得到极大提高,在未来为能源危机以及环境保护提供一种可供选择的方法与技术.  相似文献   

5.
以巯基丙酸(MPA)为稳定剂,利用共沉淀法制备了水溶性的Ag掺杂的ZnxCd1-xS合金型纳米晶.Ag掺杂后ZnxCd1-xS纳米晶产生新的发射峰,并且发光效率得到了有效提高.通过改变纳米粒子中Zn/Cd比例可有效地调控ZnxCd1-xS∶Ag纳米晶的吸收带隙宽度,同时可以在425~603 nm之间实现对ZnxCd1-xS∶Ag纳米晶发射峰位的连续调控.  相似文献   

6.
纳米材料的表面效应和尺寸效应能够使材料性质发生显著变化 .铁电纳米晶体是制备铁电纳米陶瓷和铁电复合材料的基础 ,薄膜材料亦可看作零维纳米材料在二维平面上扩展生长形成的 ,因此铁电纳米晶体结构研究具有重要意义 .对于纯PbTiO3纳米晶 ,铁电 顺电相变温度随粒径减小而降低 ,并求得了室温下铁电 顺电相变消失、粒子成为顺电体的临界晶粒尺寸[1,2 ].近年来 ,有关La改性钛酸铅 (PLT)薄膜和纳米粉制备、结构和性质的研究引起了各国学者的重视[3~ 6 ],但对于其微观结构 ,缺乏系统的研究 .我们研究了PLT纳米晶的结构和临界晶粒…  相似文献   

7.
作为一种稳定、价廉的光催化剂,TiO_2被广泛应用于各种污染物的降解;但是,较大的宽禁带(~3.2 eV)和较低的电子迁移率不仅使TiO_2很难吸收可见光,而且光生电子和空穴的复合几率高,从而导致TiO_2的总体光电效率不高.因此,设计能够被可见光激发、并具有快速光生电子传输的TiO_2一直是研究热点.研究表明,Ti~(3+)自掺杂的TiO_2(还原态TiO_(2-x))不仅能够被可见光激发,而且使TiO_2具有良好的电子导电性,从而有利于提高TiO_2的光电转换效率.另外,非金属元素的掺杂能够减小TiO_2的禁带宽度,使TiO_2能够响应可见光并具有良好的可见光催化性能,其中S元素的掺杂被广泛研究.目前,S掺杂纳米TiO_2的制备通常采用TiS2,单质S,硫脲、二甲亚砜等为S源,但这类原料通常价格昂贵或者具有一定的毒性,因而实际应用受到限制.而制备Ti~(3+)自掺杂TiO_2的方法大都是基于"还原法",在真空或强还原性气氛如H_2,CO中加热TiO_2,或采用高能粒子(电子、氩离子)轰击.在实际应用中,这些方法存在步骤多、条件苛刻、反应时间长和设备昂贵等不足.而且,还原法反应通常发生在颗粒的表面,形成的Ti~(3+)很容易被空气和水中的溶解O2氧化,降低材料的稳定性.虽然在温和的液相中还原Ti4+可用于制备Ti~(3+)掺杂的TiO_2,但是由于反应过程中有副产物生成,需要进行后续处理才能得到纯的Ti~(3+)自掺杂TiO_2.因此,设计一种简单的制备S掺杂还原态TiO_(2-x)光催化剂仍具有十分重要的意义.前期我们采用H_2O_2氧化TiH_2得到不同状态的前驱体凝胶,然后进行不同方式的后处理得到Ti~(3+)自掺杂的纳米TiO_2.本文以TiH_2和H_2O_2反应得到的黄色前驱体凝胶为Ti源,以价格低廉、无毒、稳定的二氧化硫脲为S源和还原剂,采用不同的方法制备了S掺杂的还原态TiO_(2-x)光催化剂.本文初步研究了在凝胶中加入二氧化硫脲后进行水热处理,以及将干燥的凝胶粉末与二氧化硫脲混合热处理对所得产物的影响.并与纯的TiO_2、还原态TiO_(2-x)和S掺杂TiO_2的光吸收、电化学、光催化性能进行对比研究.采用X射线衍射、透射电子显微镜、高分辨透射电子显微镜、X-射线光电子能谱、紫外-可见漫反射光谱、比表面分析和电化学工作站等技术对产物的结构、形貌和光电性能进行了表征.以罗丹明B(RhB)溶液为模拟废水,考察样品的可见光催化性能.结果表明,不同的后续处理方式不仅影响S掺杂TiO_(2-x)的结晶性和形貌,而且影响产物的光吸收性能和电子传输性能,从而使不同条件下所得产物的可见光催化性能不同.其中,采用热处理方式得到的S掺杂TiO_(2-x)样品在可见光下降解RhB的速率分别是纯的TiO_2,TiO_(2-x)和S掺杂TiO_2的31,2.5和3.6倍,而且样品具有良好的循环稳定性.  相似文献   

8.
由于近红外光在太阳光谱中占44%,因此,近红外光驱动的光催化剂的研制具有十分重要的意义.上转换发光材料可将低能量的近红外光子转换为高能光子,这种高能光子可以通过构建荧光共振转移系统将能量转移并活化量子效率较高的半导体材料,对于太阳能的转化利用具有潜在的应用前景.在本文中,通过胶体化学的过程在电纺丝制备的内嵌CdS纳米颗粒以及上转换荧光纳米颗粒(UCNPs)的二氧化硅复合纳米纤维表面外延生长一层二氧化钛层,通过高温煅烧得到二氧化钛复合纳米管.我们通过二氧化硅结构将CdS纳米颗粒与上转换荧光纳米颗粒紧紧束缚在一起,实现较高的荧光共振能量转移.而且,选择β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)作为纳米能量转换器,替代以前研究工作中使用的β-NaYF4:Yb(30%),Tm(0.5%)或者β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4纳米颗粒,来进一步提高近红外光的转换效率.通过透射电子显微镜照片很清楚的观察到制备的TiO2复合纳米管内部内嵌有大量的CdS与上转换纳米颗粒.通过X-射线衍射以及X-射线光电子能谱能仪器对产物的物相以及表面的化学组成进行了细致的表征.结果显示,通过本实验方法已经成功获得了TiO2复合纳米管.用稳态与瞬态荧光仪研究了最终样品的荧光性质.研究结果揭示,与上转换纳米颗粒以及二氧化硅复合纳米纤维相比,复合二氧化钛纳米管可以将上转换荧光纳米颗粒的(UV-Vis)部分荧光完全淬灭了.特别是,铒离子的荧光(650 nm)也被有效淬灭转移,说明本研究采用β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)纳米能量转换器,可以提高近红外光的转换效率,紫外-可见吸收光谱证实,这种二氧化钛纳米管在紫外-可见光区中的吸收光谱与β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)纳米颗粒的荧光光谱具有较大的重叠,使得上转换荧光纳米颗粒与CdS以及二氧化钛组分之间的荧光共振转移的效率大大提高,进而会显著提高光催化的效果.以罗丹明染料作为污染物为模型,我们研究了罗丹明染料在氙灯下或者近红外光光照下的光催化分解实验.研究结果表明,90%的罗丹明染料分子在20 min内就被降解掉,效率高于其它的近红外光催化剂.上转换荧光纳米颗粒的能量转换效率可以得到大幅度提高,本研究工作中制备的光催化剂利用太阳能的效率将会得到极大提高,在未来为能源危机以及环境保护提供一种可供选择的方法与技术.  相似文献   

9.
等离子体激元诱导的光电化学反应被认为是太阳能转换的有效的替代方案。寻找具有增强的光吸收以及更长载流子寿命的高效光催化剂对于提高太阳能的转换效率至关重要,但其制备却具有挑战性。我们制备了Ag纳米颗粒均匀负载的二维(2D)无定形三氧化钨(a-WO_(3-x)),并对其进行退火处理,所获得的纳米异质结用作光电极材料具有高效的光电转化效率,并且其光氧化降解性能也显著提升。该光电阳极的高光电催化(PEC)性能归因于等离子体金属Ag纳米颗粒的局部表面等离子共振(LSPR)效应能够增强体系的光吸收和热电子转移。此外,局部结晶-非晶界面的构筑可以进一步提高光生电子-空穴对的分离效率并增加体系的导电性。  相似文献   

10.
高镍层状氧化物是电动汽车高能量密度锂离子电池正极材料的首选。本文通过第一性原理计算模拟了Li_(1-x)NiO_(2-y)S_y材料的脱锂过程。通过GGA+U计算分析了体系费米能级处的电子结构,充电过程中的氧化还原机制和热稳定性。在Li_(1-x)NiO_(2-y)S_y脱锂过程中,首次发现硫参与电荷补偿,抑制过渡金属的迁移,降低晶格扭曲幅度和提高体系中氧的稳定性。这种基于硫阴离子氧化还原对锂离子电池阴极材料电化学行为的调制有助于设计高稳定性的高镍正极材料。  相似文献   

11.
综述了用于燃料电池中氧还原反应(ORR)的石墨烯衍生物负载的各种纳米催化剂的最新进展.介绍了用于表征石墨烯基电催化剂的常规电化学技术以及石墨烯基电催化剂最新的研究进展.负载于还原氧化石墨烯(RGO)上的Pt催化剂的电化学活性和稳定性均得到显著提高.其它贵金属催化剂,如Pd,Au和Ag也表现出较高的催化活性.当以RGO或少层石墨烯为载体时,Pd催化剂的稳定性提高.讨论了氧化石墨烯负载Au或Ag催化剂的合成方法.另外,以N4螯合络合物形式存在的非贵过渡金属可降低氧的电化学性能.Fe和Co是可替代的廉价ORR催化剂.在大多数情况下,这些催化剂稳定性和耐受性的问题均可得到解决,但其整体性能还很难超越Pt/C催化剂.  相似文献   

12.
利用太阳能光催化还原CO_2和H_2O到燃料和化学品是一条极具吸引力但又充满挑战性的转化途径.迄今为止,只有非常有限的光催化剂已经被报道可以在可见光照射下光催化还原CO_2.局部表面等离子体共振(LSPR)现象可以被用作一种有效的开发可见光催化剂的策略.贵金属Au,Ag,Pt等的LSPR现象已经被较为广泛的研究,并应用于光催化、光热、气敏等多种领域.而低价态金属自掺杂的金属氧化物,如MoO_(3-x)和WO_(3-x),也被证明具有LSPR现象,可用于开发更加廉价的可见光催化剂.本文通过简单的溶剂热法成功合成了低价态Mo自掺杂的MoO_(3-x)纳米片催化剂,并在合成过程中原位加入TiO_2纳米颗粒(TiO_2-NP)和TiO_2纳米棒(TiO_2-NT),构建了MoO_(3-x)-TiO_2纳米复合物.电镜表征显示,MoO_(3-x)-TiO_2-NT纳米复合物中,MoO_(3-x)纳米片和TiO_2纳米管的结合更为紧密.UV-vis光谱显示,TiO_2的复合不仅可以增强MoO_(3-x)可见区的吸收强度,同时吸收峰的位置也发生了蓝移.XPS表征显示,TiO_2复合后,MoO_(3-x)中Mo~(5+)的比例明显增加,从而提高了MoO_(3-x)中自由电子的浓度,进而增强了LSPR现象和LSPR吸光能力,且TiO_2纳米管相对TiO_2纳米颗粒具有更好的促进效果.MoO_(3-x)纳米片具有在可见光照射下光催化还原CO_2的性能,CO的生成速率为2.8μmol g~(?1) h~(?1).复合TiO_2纳米颗粒后,MoO_(3-x)-TiO_2-NP纳米复合物上,CO的生成速率提高到6.8μmol g~(?1) h~(?1).当复合TiO_2纳米管时,光催化性能显著提高,在Mo O_(3-x)-TiO_2-NT纳米复合物上,CO的生成速率可达12μmol g~(?1) h~(?1),约为MoO_(3-x)纳米片的四倍,此外还可观测到CH_4的生成.当我们将反应气氛由CO_2替换成N_2后,CO和CH_4的生成量几乎为零,证明CO和CH_4的生成主要来自CO_2的光催化还原.此外,我们还考察了MoO_(3-x)-TiO_2-NT纳米复合物光催化还原CO_2的催化性能稳定性,以12 h反应时间为一个循环,经3个循环反应后,催化剂的活性基本保持不变,证明该催化剂具有较好的稳定性.综上,我们通过MoO_(3-x)纳米片和TiO_2复合的策略,增强了MoO_(3-x)纳米片的LSPR效应,提升了催化剂对可见光的吸收能力,进而提高了MoO_(3-x)-TiO_2-NT纳米复合物光催化还原CO_2的性能.MoO_(3-x)-TiO_2-NT纳米复合物是一种具有发展潜力的光催化还原CO_2的可见光催化剂,且该纳米复合物调变LSPR效应的策略还有望用于增强其他LSPR光催化材料的光催化性能.  相似文献   

13.
采用水热合成一锅法制备了聚丙烯酸功能化单分散的La_(1-x)Eu_xF_3纳米颗粒(La_(1-x)Eu_xF_3@PAA NPs)。利用透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和光致发光光谱(PL)对样品的形貌、结构、组成和荧光性能进行表征。该纳米颗粒平均粒径为(7±3)nm,具有较好的分散性、稳定性与生物相容性。将纳米颗粒与He La癌细胞共同孵育,体外成像结果表明材料对He La癌细胞显示出低细胞毒性。用水热法制备的La_(1-x)Eu_xF_3@PAA纳米颗粒可以作为光学荧光探针用于细胞成像,在生物医学领域表现出巨大的潜力。  相似文献   

14.
半导体光催化还原Cr(VI)为Cr(III)被认为是一种能够解决环境和能源问题的绿色技术.典型光催化剂ZnO和TiO2在还原重金属离子和二氧化碳,降解有机污染物,分解水等领域均已被证明是一种有潜力的光催化剂.但是,它们窄的太阳能吸收范围和快的光生载流子复合限制了其实际应用.因此,探索能够响应可见光的高效光催化剂是非常急切的课题.研究表明,引入窄带半导体构筑异质结复合光催化剂是一种提高ZnO和TiO2可见光催化活性的有效途径.随着二维石墨烯研究的热潮,具有类石墨烯结构的材料,如过渡金属硫化物MX2(M=Mo,W,Nb,Ta,Zr;X=S,Se)以其独特的“三明治夹心”层状结构受到了研究者的高度重视.在这些MX2材料中,MoS2是间接带隙半导体,能带为1.2 eV,并且随着层数的减小,能带增加到1.8 eV,因此,它对可见光具有很好的吸收能力.MoS2具有比表面积大、吸附能力强、反应活性高等优异的物理和化学性能,被广泛应用于光催化、制氢反应、太阳能电池及锂离子电池等领域.类似于MoS2,MoSe2也应该是一种具有潜力的窄带光催化剂.不幸的是,对于MoSe2在光催化还原Cr(VI)中的应用,还鲜有报道.本文基于ZnO,ZnSe和MoSe2构筑复合光催化剂,由于它们存在阶梯型的能级结构,使得此复合物能够展现优异的可见光催化性能,这是一种提高ZnO可见光催化活性的有效方法.扫描电子和高分辨透射电子显微镜结果显示,ZnO和ZnSe纳米颗粒分散在二维MoSe2片周围,形成很好的界面接触,有利于光生电子-空穴对的快速转移和分离,促进光催化反应的进行.紫外可见吸收光谱结果表明,MoSe2/ZnO/ZnSe(ZM)复合物在可见光区域展现了很好的吸收.电化学阻抗谱和光电流响应曲线结果表明,ZM复合物中光生载流子复合被有效抑制,延长了其寿命.光催化还原Cr(VI)的实验结果发现,与纯ZnO相比,ZM复合物展现了优异的光催化活性.在可见光照射180 min后,ZM复合物对Cr(VI)的还原率达到100%.优异的光催化活性归因于其优异的可见光吸收、阶梯型能级结构和光生载流子的有效转移.光催化重复性实验和X射线衍射图结果表明,在光催化反应之后ZM复合物的结构没有发生变化,具有良好的稳定性.本工作可为进一步设计具有理想功能的二维复合光催化剂提供有价值的信息.  相似文献   

15.
光催化分解水制氢和还原CO2是太阳能利用领域的研究热点,对清洁能源的转化具有重要意义.石墨相氮化碳(CN)作为一种非金属半导体,是一种非常有开发潜力的光催化材料.然而限于其聚合物本质,光催化效率仍有待进一步提高.原位非金属掺杂可以利用元素电子结构调控电荷分布,优化光生电荷传输性能.同时,半导体复合,尤其是2D层状复合结构的构筑,可充分发挥2D半导体的优势,合适的能带交错有利于光生电荷的传输,可在一定程度上加速催化反应的进行.本文首先以草酸为氧掺杂源,采用二步煅烧法合成氧掺杂氮化碳纳米片催化剂(CNO).在二次煅烧和氧掺杂共同作用下,增大了CN层间距和多孔性,颗粒尺寸减小,同时增强了对光的吸光性,拓展了可见光吸收范围.接下来采用一步水热合成法得到ZnIn2S4@CNO(ZC)复合材料,在可见光照射下通过分解水制氢和CO2还原反应对复合材料进行光催化还原性能评价.采用X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)、荧光光谱(PL)、光电化学测试等方法对ZC进行详细的结构表征和分析.XRD和XPS结果表明,经过一步直接水热可得到层状ZC复合材料,高倍TEM进一步证实二者形成均一的2D异质复合材料.N2-吸附-脱附曲线表明,复合材料具有较大的比表面积和均一的孔结构分布,主要得益于O掺杂CNO纳米片的多孔性结构.光电性质测试结果表明,相比于CNO,复合材料具有降低的荧光发射强度和延长的荧光寿命,表明复合产物显著抑制了光生电荷的复合.电化学测试进一步表明,复合异质结的构筑有利于光生载流子的产生,同时降低了界面电荷转移电阻,提高了电荷迁移速率.因此,多孔2D异质结构的构筑对促进CN基半导体光催化还原具有重要作用.在可见光照射下(λ>400 nm),复合材料表现出优异的光催化还原性能,且随着CNO含量的增加催化活性不断提高,其中ZC 40%(CNO质量比40%)具有最佳的催化活性,其产氢速率达188.4μmol/h,约是ZnIn2S4和CNO的2.1倍.同时,光催化还原CO2测试表明,复合材料具有显著提高的CO和CH4产率,其中CO为主要反应产物.ZC40%的CO产生速率为12.69μmol/h,分别是ZnIn2S4和CNO的2.2倍和14.0倍.对催化剂进行连续光反应,结果表明,复合催化剂具有优异的结构稳定性和活性稳定性,能够持续发生光还原反应制取H2和CO.  相似文献   

16.
用固相反应合成了Pb1-xTbxTi1-xMnxO3(0≤x≤0.10)固溶体,并用X射线粉末衍射进行了表征,室温下其空间群为P4mm.热分析仪测试结果显示,随着Tb和Mn掺杂量的增加,该固溶体的相变温度Tc降低.介电常数在Tc附近出现峰值,表明对应的相变是铁电相变.磁性测量显示,当x=0.08和x=0.10时,Pb1-xTbxTi1-xMnxO3分别在25和29 K附近有顺磁性向反铁磁性的转变.  相似文献   

17.
采用传统的水热合成法和烧结过程制备了Ba_(1-x)Ca_xZr_(0.2)Ti_(0.8)O_3(BCZT,x=0.1,0.2,0.3)陶瓷.研究了Ca~(2+)含量对其相组成、微观结构和介电性质所产生的影响.结果表明当x=0.3时,出现了不纯相.随着Ca~(2+)含量的增加,BCZT陶瓷的形貌从平板状转化为不规则的立方体状.介电常数曲线显示为大而宽的峰,其峰值出现在约66℃.从介电损耗曲线可以观察到随着烧结温度的增加,出现了斜方相至四方相(T_(O-T))和四方相至立方相(T_(T-C))的多晶相变.  相似文献   

18.
近年来,电镀和染料行业工业废水中排放的有机污染物和重金属离子严重危害着环境.构建无机-有机新型纳米材料用于光催化去除重金属离子和有机污染物受到了广泛的关注.共轭聚合物因其低廉的制造成本,快速的电子传送能力,优秀的电化学性能和高的机械性能,它们作为一类新能源材料已经快速发展起来.Remita等使用软模板方法制备的一种共轭聚合物聚1,4-二苯基丁二炔(PDPB)在可见光下对苯酚表现出较好的去除率.然而,聚合物PDPB的一些缺陷限制了其应用,比如高的疏水特性和快速的光生电子-空穴复合.因此,我们引入氧化石墨烯(GO)和金纳米粒子来提高PDPB的光催化活性.通过简单的机械搅拌和光还原方法制备了Au-GO/PDPB复合材料.通过TEM,XRD,XPS,固体紫外和光电流测试等技术对催化剂进行了一系列表征,结果发现氧化石墨烯作为优秀的电子传送基地,金纳米粒子作为电子捕获剂,在空间上实现了电子空穴的空间隔离,从而大大提高了Au-GO/PDPB复合材料对于六价铬离子和苯酚的同步光去除的光催化活性.XPS表征和TEM图像表明了GO和Au纳米粒子的存在.其PDPB有着纳米纤维的结构,宽度在20 nm左右,长度在几个微米.当复合了氧化石墨烯后,可以明显看出氧化石墨烯的形态,进一步光还原负载金纳米粒子,同样可以在TEM图中观察到金纳米粒子的存在,其直径在10 nm左右.之后通过光催化同步去除六价铬离子和苯酚来探究Au-GO/PDPB复合材料的活性,结果表明所制备的Au-GO/PDPB比纯的PDPB有着增强的光催化活性在同步光去除六价铬离子(Cr(VI))和苯酚中.更进一步地是,我们同样确定了GO和Au纳米离子的最佳负载量,结果发现,Au1-GO2/PDPB复合材料(金的负载量为1 wt%,氧化石墨烯的负载量为2 wt%)在所有催化剂中有着最好的光催化活性,其在4 h内对苯酚的去除率达到49.4%,相应的对于六价铬离子的还原率达到了77.4%.我们的研究提供了一种构建有机-无机杂化复合材料的方法,其在太阳光下对于有机污染物和重金属离子的同步去除有着高的光催化活性.  相似文献   

19.
研究了Sc_2O_3掺杂CeO_2基电解质材料的微观形貌和电性能。采用溶胶凝胶法制备了Sc_2O_3掺杂CeO_2基电解质粉体, Sc_2O_3掺杂量分别为6%, 8%, 10%。采用单向压力法将电解质粉体压制为圆片状素坯,分别在1400, 1450, 1500℃下,空气中烧结制备电解质材料。研究分析了不同掺杂比例及不同烧结温度对电解质的相组成、微观形貌及电导率的影响。实验结果表明:低温下, Sc_2O_3能溶于CeO_2中形成固溶体,随着Sc_2O_3掺杂量由6%增加到10%(摩尔分数,下同),晶胞参数减小;高温烧结时溶于CeO_2中的Sc_2O_3会析出,且随着烧结温度的升高析出量增加;当Sc_2O_3掺杂量为8%、烧结温度为1500℃时,在750℃时Sc_2O_3掺杂CeO_2电解质电导率最大为8.78×10~(-3) S·cm~(-1),活化能为1.220 eV。  相似文献   

20.
Mixed Ga–Zn oxynitrides were synthesized using coprecipitation, wet-precipitation, and sol-id-solution methods. The oxynitrides were used as supports for Rh nanoparticle catalysts in photo-catalytic water splitting, CO oxidation, and H2 oxidation. Mixed Ga–Zn oxynitrides produced by wet precipitation and nitridation had good visible-light-absorption properties and high surface areas, so they were used to support uniformly sized poly(vinylpyrrolidone)-stabilized Rh nanoparticles. The nanoparticle size range was 2–9 nm. These catalysts had negligible activity in photocatalytic H2 production by water splitting with methanol as a sacrificial agent. Other mixed Ga–Zn oxynitrides were also inactive. A reference sample provided by Domen also showed very low activity. The in-fluence of particle size on Rh-catalyzed oxidation of CO and H2 was investigated. For CO oxidation, the activities of small particles were higher for particles with higher Rh oxidation degrees. The op-posite holds for H2 oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号