首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
光催化技术作为一种绿色的环境修复方法而备受关注,它直接利用太阳光作为能源,可有效地降解有机污染物.铋系化合物具有化学稳定性强、抑制光腐蚀、无毒和来源广泛等优点,被认为是一种环境友好的光催化剂,广泛用于降解染料、苯酚和其他有机污染物.BiOCl具有独特的内部结构,可形成内电场促进电子和空穴的移动,抑制其复合.但是BiOCl本身带隙能过大,只能被紫外光激发,对光的利用率较低,限制了其在环境治理中的应用.近两年来发现,m-Bi2O4带隙能小,可吸收大波长的可见光,催化性能好.为充分发挥m-Bi2O4的优异性质,改善BiOCl的性能,本文将BiOCl与m-Bi2O4复合制得新型催化剂,降低催化剂的带隙能,增强对光的吸收,提高量子效率,促进光生载流子的分离,抑制电子-空穴复合,从而提高催化剂性能,加速降解反应进程.本文通过离子刻蚀法制备具有p-n异质结的m-Bi2O4/BiOCl复合催化剂,通过调节HCl的加入量制得不同比例的催化剂,并考察了其在可见光下催化降解MO(甲基橙)的性能.结果表明,m-Bi2O4/BiOCl复合催化剂在可见光下表现出优异的光催化降解MO和四环素的性能,反应10内min可降解95%的MO,反应150 min内四环素的降解率为85.5%;该复合催化剂对MO和四环素的光降解效率分别是纯BiOCl的52.3和4.9倍.活性自由基捕获实验表明,空穴在光催化降解过程中起最主要的作用,其次是超氧自由基,羟基自由基对降解反应也起到一定的作用.采用XRD,SEM,EDS,TEM,SAED,FT-IR,Raman,XPS,BET,UV-vis和光电流等表征方法分析了催化剂的结构、形貌、化学组成、元素价态、孔结构、带隙能、光学性质和载流子复合效率.结果表明,与BiOCl的斜四方体相比,m-Bi2O4/BiOCl复合催化剂呈现纳米片状结构,氯离子进入晶格的内部,颜色也由BiOCl原来的深褐色变为黄色.m-Bi2O4/BiOCl为介孔结构,比表面积为112.90 m2/g,其吸收波长红移,由紫外光扩展至可见光区域,带隙能也由3.2降低为1.87 eV,能带弯曲形成p-n异质结,提高了电子-空穴的转移效率,抑制其复合;m-Bi2O4/BiOCl的光电流密度高于m-Bi2O4和BiOCl,电子-空穴的分离效率更高,因而其催化性能更优越.  相似文献   

2.
利用原位沉积法将Bi OBr纳米片生长到g-C_3N_4表面,制得g-C_3N_4-Bi OBr p-n型异质结复合光催化剂。采用X射线衍射(XRD)、红外光谱(FTIR)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、紫外可见漫反射(UV-Vis-DRS)和荧光光谱(PL)等测试对光催化剂结构和性能进行表征。通过可见光辐照降解甲基橙水溶液检测评估复合光催化剂光催化活性。研究结果表明:复合光催化剂由Bi OBr和g-C_3N_4两相组成,Bi OBr纳米片在片状g-C_3N_4表面快速形核生长形成面-面复合结构。相比于纯相g-C_3N_4和Bi OBr,g-C_3N_4-Bi OBr复合材料具有更强可见光吸收能力,吸收带边红移。在可见光辐照100 min后,性能最佳的2:8 gC_3N_4-Bi OBr复合光催化剂光催化活性分别是纯相g-C_3N_4和Bi OBr的1.8和1.2倍,经过4次循环实验后,其降解率仍达84%,说明复合结构光催化剂催化性能和稳定性增强。复合光催化剂的荧光强度显著降低,说明光生载流子复合得到了有效抑制。复合光催化剂催化性能的提高归因于p-n型异质结促进电荷有效分离、抑制电子-空穴复合和吸收光波长范围的扩展,相比单一成分材料具有更好的催化活性和稳定性。自由基捕获实验证明,可见光降解甲基橙光催化过程中的主要活性成分为空穴,并据此提出了可能的光催化机理。  相似文献   

3.
水热法制备了系列p-n复合半导体p-CoFe_2O_4/n-CdS。采用X射线衍射(XRD)、冷场发射扫描电子显微镜(SEM)、紫外-可见漫反射光谱(UV-Vis DRS)、透射电镜(TEM)和电化学工作站等对制得的光催化剂进行了结构和性能表征。研究了p-CoFe_2O_4/n-CdS复合光催化剂的可见光催化制氢性能及光腐蚀性能,并对光催化活性的提高、反应条件的影响及光腐蚀行为的抑制机理进行了分析。结果表明:由于CoFe_2O_4和CdS两种窄带隙半导体复合增加了光吸收率;CdS独特的树形结构以及CoFe_2O_4和CdS二者复合所产生的能带交迭和内建电场的三重作用,促进了电子从CoFe_2O_4向CdS的迁移,减少电子-空穴对复合的概率,增强了光催化活性。光生电子-空穴对的分离效率以及光催化剂表面吸附性能都对产氢速率有重要影响。CH_3OH水溶液的pH对光催化剂中光生电子-空穴对的分离效率以及光催化剂表面吸附性能都有影响。牺牲剂CH_3OH的加入以及CoFe_2O_4和CdS二者复合所产生的能带交迭和内建电场的作用都对CdS的光腐蚀起了抑制作用,后者的抑制效果更好。  相似文献   

4.
采用光化学沉积法制备了一系列不同Pt含量的新型Pt/BiOCl纳米片光催化剂,运用N2物理吸附-脱附、X射线粉末衍射、扫描电镜、透射电镜、X射线光电子能谱、光致发光光谱、紫外-可见漫反射光谱等手段对Pt/BiOCl进行了表征,并以λ=254nm的紫外灯和钨灯为光源,考察了Pt含量对Pt/BiOCl光催化降解酸性橙II活性的影响.结果表明,沉积的Pt对BiOCl样品比表面积的影响不大,但可有效增强催化剂对可见光的吸收能力,显著抑制光生电子与空穴的复合.当Pt含量为1%~2%时,能大幅度提高紫外光下BiOCl催化降解染料的活性,并产生可见光活性.这是由于Pt/BiOCl具有一定的可见光吸收能力,产生了Pt纳米粒子的等离子体光催化作用.  相似文献   

5.
碘氧铋(Bi OI)半导体光催化剂具有独特的层状结构与宽的光吸收范围,在光催化降解污染物方面表现出较好的催化活性.然而,较窄的带隙加快了光生电子空穴对的复合,大大限制了Bi OI光催化剂的发展应用.研究表明,通过富铋策略调控卤氧铋材料中的卤素含量,可以实现对其能带结构的可控调控.本文通过构筑氮磷共掺杂石墨烯量子点/Bi_5O_7I(NPG/Bi_5O_7I)复合光催化材料,不仅提高了Bi_5O_7I材料对可见光的吸收能力,同时增大了光生电子空穴对的分离效率,显著提升了NPG/Bi_5O_7I复合材料的光催化降解性能.本实验通过简单的离子液体辅助溶剂热方法合成了NPG/Bi_5O_7I复合光催化材料.采用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、拉曼光谱(Raman)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和高分辨率透射电子显微镜(HR-TEM)等表征手段证明已经成功地制备了NPG/Bi_5O_7I复合材料.同时,以盐酸四环素(TC)和恩诺沙星(ENR)为目标污染物探究了所制备NPG/Bi_5O_7I材料的光催化活性.实验结果表明,在相同的实验条件下,相对于Bi_5O_7I纳米棒, NPG/Bi_5O_7I复合材料具有更高的光催化活性.光照120 min后,相比于Bi_5O_7I单体材料, NPG/Bi_5O_7I复合材料对TC的去除率提高了54.4%, ENR的去除率则提高了约54.9%.紫外可见漫反射(DRS)、稳态荧光(FL)、光电流和阻抗(EIS)结果表明, NPG的引入能够显著拓宽Bi_5O_7I材料的光吸收范围,提高材料光生载流子的分离效率,抑制其重组,大大提升材料的光催化降解活性.电子顺磁共振(ESR)、X射线光电子能谱分析(XPS)和自由基捕获实验结果进一步验证了NPG/Bi_5O_7I复合材料光催化性能提高的可能机制.当可见光照射时, Bi_5O_7I价带上的电子被激发跃迁至导带并在价带留下空穴;跃迁至导带的光生电子则迅速从Bi_5O_7I转移到NPG,从而有效地抑制了光生电子空穴对的重组.随着光照时间的延长,聚集在NPG上的电子将O_2还原为·O_2~–,产生的·O_2~–进一步将有机污染物降解为小分子无机物.与此同时, Bi_5O_7I价带上的空穴具有极强的氧化能力,可以直接将目标污染物矿化降解.  相似文献   

6.
采用水热法制备粒径为1~2μm的BiVO_4微米片,然后在微米片表面沉积不同含量的Ag_2CO_3颗粒,制备Ag_2CO_3/BiVO_4复合微米片光催化剂。利用X射线粉末衍射(XRD)、扫描电镜(SEM)、红外光谱(FTIR)、紫外-可见漫反射光谱(UV-Vis DRS)、光致发光(PL)光谱、瞬态光电流-时间响应对催化剂进行表征。以可见光为光源,罗丹明B为降解对象进行光催化活性测试。结果表明,复合适量Ag_2CO_3有利于提高光催化剂的比表面积,改善催化剂的表面性能。活性测试结果表明,当复合10%(w/w)Ag_2CO_3时,Ag_2CO_3/BiVO_4光催化活性最佳,比纯BiVO_4提高4.4倍。光致发光(PL)光谱、瞬态光电流-时间响应测试结果表明,复合Ag_2CO_3能有效抑制光生电子与空穴的复合。自由基捕获实验结果表明,该体系的活性氧物质为空穴和羟基自由基。Ag_2CO_3/BiVO_4复合光催化剂活性提高的原因,是较宽带隙的Ag_2CO_3与较窄带隙的BiVO_4形成的异质结有效抑制了光生电子与空穴的复合,同时两者适宜的能带结构保证产生更多的空穴,从而具有更强的氧化能力。  相似文献   

7.
近年来,光催化技术被广泛应用于环境和能源领域.其中,g-C_3N_4因化学稳定性和热稳定性好、能带结构易调控而成为一种有前景的可见光光催化剂.然而,g-C_3N_4的电子-空穴对易复合,导致其不能充分利用太阳光,光催化效率并不理想.本文通过实验与理论结合的方法设计并制备了具有独特电子结构的Mg/O共同修饰的无定形氮化碳(记为MgO-CN),以30mg/L的四环素盐酸溶液(TC)作为目标污染物评价了其光催化性能.经X射线衍射、扫描电镜、透射电镜、N_2物理吸附、紫外-可见光谱等表征手段分析表明,MgO-CN样品(002)晶面的衍射峰强度随着MgO含量增加而减弱,CN趋向于无定形化.同时,MgO-CN样品的可见光吸收边带发生红移,呈现出更强的可见光吸收能力.此外,Mg原子和O原子共同修饰的独特电子结构可以通过C→O←Mg的电子传递路线在O原子周围产生局域电子,从而抑制电子-空穴的复合.光催化降解TC的实验结果表明,在可见光照射后,含有1.2 wt%MgO的复合样品MgO-CN-1.2具有最佳光催化活性,TC降解效率为82.0%,比g-C_3N_4的光催化效率(23.5%)高出58.5%,且光催化降解过程符合准一级动力学,MgO-CN-1.2的反应速率常数(0.01018 min~(–1))是g-C_3N_4(0.00205 min~(–1))的5倍.自由基捕获测试实验表明,g-C_3N_4和Mg O-CN-1.2样品均可以产生·O_2~–自由基和·OH自由基,但是Mg O-CN-1.2样品的·O_2~–和·OH信号更强.这是由于Mg O-CN-1.2样品可以吸收更大范围的可见光用于激发电子,同时结合理论计算证明,MgO-CN内部电子在O原子周围汇集,形成的电子定向传输通道对催化剂表面的电子-空穴复合有抑制作用,更加有利于电子的迁移而诱导O_2生成·O_2~–.由于Mg O-CN-1.2和g-C_3N_4的价带位置分别位于1.47和1.60 eV,此价带上的h~+不能与H_2O和OH~–直接反应生成·OH,而是由生成的·O_2~–再与H~+和e~–按照O_2→·O_2→H_2O_2→·OH的反应途径生成·OH.本文最后分析,MgO-CN复合物参与反应的主要活性物种为·O_2~–,·OH和h~+光催化降解污染物的反应机理.其中,·O_2~–对光催化降解TC的贡献最大,为最主要的活性物质.本文工作提供了一种新的策略来改变氮化碳的电子结构,对提高其催化性能具有积极意义.  相似文献   

8.
采用光化学沉积法制备了一系列不同Ag含量的新型Ag/BiOX(X=Cl,Br,I)复合光催化剂,应用X射线粉末衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、光致发光(PL)谱、紫外-可见(UV-Vis)光谱和N2物理吸附等手段对催化剂进行表征,并以420nm<λ<660nm的可见光为光源,评价了该催化剂光催化降解酸性橙II的活性,考察了不同含量的Ag沉积对BiOX样品光催化性能的影响.N2物理吸附测试结果表明,沉积银在一定程度降低了催化剂的比表面积.UV-Vis测试结果表明,Ag能产生表面等离子共振吸收,有效增强BiOCl和BiOBr对可见光的吸收能力.PL测试结果则表明,Ag能显著抑制光生电子(e-)和空穴(h+)的复合.Ag的存在大幅度提高了BiOX对染料的光催化降解活性.当负载Ag的质量分数(w)为1%-2%时,可使BiOCl、BiOBr和BiOI光催化活性分别提高了10、13和2倍.Ag/BiOX复合光催化剂具有更高催化活性的原因是复合光催化剂对可见光有很强的吸收能力,同时产生了银等离子体光催化作用和银抑制了Ag/BiOX(X=Cl,Br,I)的光生电子-空穴的复合.  相似文献   

9.
绿色光催化技术在可持续水处理和环境修复领域具有广阔的应用前景.光催化效率在很大程度上取决于光催化剂,其中二氧化钛(Ti O_2)因具有超强的光氧化能力、化学稳定性和低成本等优点而广泛应用于光催化降解水中各类有机污染物.然而,Ti O_2的光催化效率仍然受限于其自身比表面积小、太阳光利用率低以及光生载流子复合速率快等缺点.为了克服以上缺点,进一步提高Ti O_2的光催化效率,本研究采用简单易行的原位共缩合结合水热处理技术,以葡萄糖为碳源,四异丙氧基钛(TTIP)为钛源,成功制备了一系列由锐钛矿相Ti O_2与石墨相碳组成的Ti O_2/C复合光催化剂,它们在水中新兴酚类污染物的降解中表现出了优异的可见光光催化活性.通过X射线衍射、热重分析、X射线光电子能谱、孔隙率分析、扫描电镜、透射电镜、紫外-可见漫反射光谱等表征手段对催化剂的组成和结构、形貌、孔隙率性质及光吸收特性进行了表征.结果显示,Ti O_2/C复合光催化剂具有独特的微孔/介孔结构,以及比Ti O_2更大的比表面积(222-263 m~2 g~(-1))和更窄的带隙能(2.50-2.77 e V).通过水中新兴酚类污染物如乙酰氨基酚(APAP)和对羟基苯甲酸甲酯(MPB)的可见光光催化降解实验研究了Ti O_2/C的光催化性能.结果显示,Ti O_2/C复合光催化剂表现出优于纯Ti O_2和商用P25-Ti O_2的可见光光催化活性.其中,性能最佳的Ti O_2/C-10.3(碳掺杂量为10.3%)在可见光照射下20 min即可完全降解APAP,180 min可降解90%以上的MPB;Ti O_2/C-10.3光催化降解APAP和MPB的表观速率常数分别是纯Ti O_2的7.6和2.8倍,是商用P25-Ti O_2的6.2和2.6倍.Ti O_2/C复合光催化剂表现出良好的稳定性,能够在完成五次光催化循环实验后仍然保持其良好的光催化活性.通过光电化学实验、间接化学探针测试和电子自旋共振光谱分析并结合表征结果,揭示了Ti O_2/C可见光光催化活性提高的原因.首先,石墨相碳的掺入降低了材料的带隙能,拓宽了材料的可见光吸收范围,同时石墨相碳可作为电子阱促进光生电子从Ti O_2的价带转移到自身,从而有效抑制光生载流子的复合;其次,在复合催化剂中,锐钛矿相Ti O_2与石墨相碳密切接触有利于光生载流子的有效分离,也可起到抑制光生载流子复合的作用;最后,复合催化剂较大的比表面积和独特的微孔/介孔双孔结构为APAP和MPB降解反应提供了充足活性位点,同时入射光在孔道内多次反射又进一步提高了催化剂对光能的利用率.在Ti O_2/C光催化降解体系中检测到的主要活性物种有羟基自由基、光生空穴和超氧自由基,三者共同参与APAP和MPB的降解和矿化过程.通过对光催化降解中间产物的分析,分别提出了Ti O_2/C复合光催化剂可见光催化降解APAP和MPB的路径.本研究为设计高效降解水中有机污染物的碳掺杂Ti O_2光催化材料提供了新思路.  相似文献   

10.
制备了C/CaFe_2O_4纳米棒复合材料,并考察了其光催化性能,同时深入研究了C修饰对CaFe_2O_4活性的影响.研究发现,复合材料的光催化降解活性与C和CaFe_2O_4的质量比密切相关.其最佳的碳含量为58 wt%,所得复合光催化剂对亚甲基蓝(MB)的降解速率常数达到0.0058 min~(-1),是铁酸钙的4.8倍.进一步研究表明,C修饰在CaFe_2O_4表面显著提高了样品对亚甲基蓝染料的吸附性能.吸附等温线结果发现,MB以单分子层形式吸附于CaFe_2O_4表面.总体而言,C覆盖在CaFe_2O_4表面可以使光生电子和空穴更有效的分离和传输,可以显著提高催化剂对MB的吸附性能,还可以增强样品对光的吸收能力,因而催化剂光催化降解MB性能增加.表征结果表明,复合光催化剂表面含有大量羧基和羟基基团,导致光催化剂表面带负电荷,从而有利于阳离子的MB的静电吸附.为了进一步验证该吸附机理,我们选择了另外两种染料分子,阳离子的罗丹明B和阴离子的甲基橙.结果显示,该光催化剂对罗丹明B同样具有较强的吸附能力和较好的光催化降解活性,但对甲基橙几乎没有吸附和光催化性能.这充分说明亚甲基蓝染料通过静电相互作用的形式吸附于催化剂表面,较好的吸附性能进一步促进了光催化剂的降解活性.为了讨论光催化机理,向反应体系中加入不同的捕获剂来研究光催化反应过程中产生的活性物种.研究显示,羟基自由基在光催化降解亚甲基蓝的反应中几乎没有作用,光生空穴发挥了次要作用,而超氧自由基在整个反应中发挥了主导作用.因此,光催化降解的机理如下:CaFe_2O_4在可见光激发下产生光生电子和空穴,电子快速转移到C材料的表面并与空气中的氧气反应生成超氧自由基,后者再与吸附在光催化剂表面的染料分子反应产生低毒或无毒的降解产物.此外,CaFe_2O_4价带上产生的空穴也可以直接将染料分子氧化成小分子产物  相似文献   

11.
Ag_3PO_4由于具有独特的活性而被广泛应用于光催化领域.然而,由于其光生电子和空穴的快速复合, Ag_3PO_4的光催化性能在几个循环之后显著下降,光腐蚀限制了它的实际应用.因此,亟需设计一种新型的复合光催化剂来抑制电子空穴对的快速复合.而Z型复合光催化剂可综合不同光催化剂的优点,克服单一光催化剂的缺点.Z方案体系使用两个窄带隙的催化剂取代宽带隙的光催化剂,从而可以捕获更多的光子.并且光催化剂的氧化还原反应分开进行,可以有效地防止电子和空穴的复合,从而大大提高复合光催化剂的性能.本文通过微波水热法和简单搅拌法成功地制备了Z机制WO_3(H_2O)_(0.333)/Ag_3PO_4复合材料.采用X射线衍射、扫描电子显微镜、X射线光电子能谱、N2吸附-解吸等温线、比表面积测定、紫外-可见光谱和光电流曲线等方法对WO_3(H_2O)_(0.333)/Ag_3PO_4复合材料进行了表征.通过这些表征,我们确定了所研究的光催化剂物相高度匹配;确定了光催化剂的形貌:确定了复合光催化剂是复合物,而不是简单的混合物;确定了光催化剂中光生电子和空穴的结合、分离效率;研究了光催化剂的吸收边以及带隙.光催化降解测试发现, WO_3(H_2O)_(0.333)/Ag_3PO_4复合材料在可见光下表现出优异的催化性能,这主要归因于WO_3(H_2O)_(0.333)/Ag_3PO_4的协同作用.其中15%WO_3(H_2O)_(0.333)/Ag_3PO_4的光催化活性最高,在4min内几乎将30m L20mol/L的次甲基蓝完全降解.并且,复合材料的稳定性也得到很大提升.经过5次循环反应后, 15%WO_3(H_2O)_(0.333)/Ag_3PO_4的降解效率仍可以维持在88.2%.相比之下,纯Ag_3PO_4的降解效率仅为20.2%.这表明添加WO_3(H_2O)_(0.333)可以显著提高Ag_3PO_4的耐光腐蚀性.最后,我们详细研究了Z-机制机理.在可见光照射下, Ag_3PO_4和WO_3(H_2O)_(0.333)的表面产生电子-空穴对.WO_3(H_2O)_(0.333)的光生电子首先转移到其导带,然后迁移到Ag_3PO_4的价带中与空穴结合.因此, Ag_3PO_4的光生电子和空穴被有效分离,光生电子连续转移到Ag_3PO_4的导带界面.这样, Ag_3PO_4的导带界面上积累了大量的电子,并且在WO_3(H_2O)_(0.333)的价带界面中积累了大量的空穴.在空穴的作用下,–OH与h~+反应生成·OH,·OH与污染物甲基蓝反应生成CO_2和H_2O.同时,大量的H~+和O_2与电子反应,在Ag_3PO_4的导带界面处产生H_2O_2.之后, H_2O_2与电子反应产生·OH,·OH与甲基蓝反应形成CO_2和H_2O.这样,光生电子和空穴连续分离,大大提高了光催化反应速度,最终催化剂的光催化活性得到极大的提高.  相似文献   

12.
随着科学技术的不断进步和经济的快速发展,人类对自然资源的需求量越来越大,在开发利用自然资源的同时,大量的有机污染物也随之进入自然环境.这些物质不仅污染环境、破坏生态,更对人类的生活和健康带来了巨大的威胁.研究证实,半导体光催化剂在光照条件下可以破坏有机污染物的分子结构,最终将其氧化降解成CO2、H2O或其它不会对环境产生二次污染的小分子,从而净化水质.近年来,有关光催化降解有机污染物的报道日益增多. ZnO作为一种广泛研究的光催化降解材料,因其无毒、低成本和高效等特点而具有一定的应用前景.但是ZnO较大的禁带宽度(3.24 eV)导致其只能吸收紫外光部分,而对可见光的吸收效率很小,极大地制约了其实际应用.除此之外, ZnO受光激发产生的电子-空穴分离效率较低、光催化过程中的光腐蚀严重也是制约其实际应用的重要因素.为了提高ZnO的光催化活性和稳定性,本文合成了用g-C3N4修饰的氧空位型ZnO(g-C3N4/Vo-ZnO)复合催化剂,在有效调控ZnO半导体能带结构的同时,通过负载一定量的g-C3N4以降低光生电子-空穴对的复合速率和反应过程中ZnO的光腐蚀,增强催化剂的光催化活性和稳定性.本文首先合成前驱体Zn(OH)F,然后焙烧三聚氰胺和Zn(OH)F的混合物得到g-C3N4/Vo-ZnO复合催化剂,并采用电子顺磁共振波谱(EPR)、紫外-可见光谱(UV-vis)、高分辨透射电镜(HRTEM)和傅里叶变换红外光谱(FT-IR)等表征了它们的结构及其性质. EPR结果表明,ZnO焙烧后具有一定浓度的氧空位,导致其禁带宽度由3.24 eV降至3.09 eV,因而提高了ZnO对可见光的吸收效率. UV-vis结果显示, Vo-ZnO复合g-C3N4后对可见光的吸收显著增强. HRTEM和FT-IR结果均表明, g-C3N4纳米片和Vo-ZnO颗粒之间通过共价键形成了强耦合,这对g-C3N4/Vo-ZnO复合催化剂中光生载流子的传送和光生电子-空穴对的有效分离起到重要作用.可见光催化降解甲基橙(MO)和腐殖酸(HA)的实验进一步证明, g-C3N4/Vo-ZnO复合材料具有较好的光催化活性,优于单一的g-C3N4或Vo-ZnO材料.同时还发现, g-C3N4的负载量对光催化活性有显著影响,当氮化碳的负载量为1 wt%时,所制材料具有最高的光催化活性:可见光照射60 min后,MO降解率可达到93%, HA降解率为80%.复合材料光催化活性的增强一方面是因为氧空位的形成减小了ZnO的禁带宽度,使得ZnO对可见光的吸收能力大大增强;另一方面, g-C3N4和Vo-ZnO的能带符合了Z型催化机理所需的有效能带匹配,使得光生电子-空穴对得到了有效的分离,从而提高了光催化活性.降解MO的循环实验表明, g-C3N4/Vo-ZnO催化剂具有很好的稳定性且不容易发生光腐蚀.与此同时,我们对比了用不同方法制备的g-C3N4/ZnO材料的催化性能.结果显示,本文制备的g-C3N4/Vo-ZnO复合材料具有更好的降解效率.总体而言,对于降解有机污染物, g-C3N4/Vo-ZnO可能是一个更为有效可行的催化体系.此外,本文也为设计与制备其他新型光催化剂提供了一条新的思路.  相似文献   

13.
姚百新  王亚  臧荣斌  杨秀丽  解明华 《化学通报》2021,84(11):1224-1230
氯氧化铋(BiOCl)较大的禁带宽度使得其只能对紫外光产生响应,严重制约了其进一步光催化应用。为实现BiOCl对可见光的利用,以In2S3为可见光光敏剂,并基于高效实用的机械研磨手段构建BiOCl/In2S3复合可见光催化剂。通过扫描电子显微镜(SEM)、X射线衍射(EDS)、X射线衍射(XRD)、红外光谱(FT-IR)和紫外-可见漫反射光谱(UV-Vis DRS)等方法对催化剂的形貌和结构进行表征。选择盐酸四环素(TC)可见光催化降解为评价模型,系统研究了BiOCl/In2S3复合比例对光催化活性的影响。结果表明两者复合比例为1:1时具有最佳的光催化活性,在可见光照射下对TC的降解效率高达91.4%,且经3次循环降解效率仍保持在87.3%。机理研究表明,In2S3被可见光激发产生电子注入BiOCl的导带(CB),能有效提升载流子的分离效率,而h+和?O2-是光降解过程中的主要活性物质。该项研究工作充分表明了In2S3对BiOCl的高效光敏活性,展示了物理复合法在新型高效可见光催化体系构建中的重要意义。  相似文献   

14.
印染废水具有水量大、色度高、难生化降解、有毒有害物质多等特点;另外抗生素废水的大量排放对水生和陆地生态系统带来了危害.光催化可有效降解有机物,因而被广泛研究和应用,其多以半导体作为光催化剂.ZnO因价廉、无毒、来源广、光催化活性高而广受关注.但是,由于其带隙较宽,只能被紫外光激发,对太阳光的利用率低,且易发生光腐蚀,光稳定性较差,从而大大降低了光催化活性,不利于其应用.将ZnO与其他半导体复合是改善其光催化活性的最有效方法之一.铋基光催化剂一直是光催化领域的研究热点,作为无机半导体纳米晶之一,Bi_2WO_6具有无毒性、适当的带隙和优异的光催化性能,因而得到广泛关注.本文将Bi_2WO_6复合到ZnO上以降低ZnO带隙能,提高其对太阳能的转换,降低电子-空穴的复合几率,促进电荷转移的有效分离,从而提高ZnO的光催化性能.本文采用两步水热法合成了一种异质结的花状Bi_2WO_6/ZnO复合材料.通过降解亚甲基蓝(MB)和四环素,研究了其光催化性能.结果表明,该Bi_2WO_6/ZnO复合材料对MB和四环素具有优异的光催化活性,对它们的光降解效率分别是纯ZnO的246和4500倍,相应地,对这两种污染物的光降解率分别是纯ZnO的120和200倍.活性因子捕获实验结果显示,超氧自由基在光催化降解过程中起主要作用,其次是羟基自由基和光生空穴.采用X射线衍射、透射电镜、扫描电镜、紫外-可见漫反射、N_2吸附脱附、X射线光电子能谱、荧光光谱、光电流等方法对材料的形态结构、孔结构、化学组成、带隙能、光吸收性质、载流子复合效率等进行了分析.复合后Bi_2WO_6/ZnO的形貌为微米尺寸纳米结构的花状绒球,直径约为4μm,带隙能量从3.2 eV降为2.6 eV.Bi_2WO_6/ZnO为介孔结构,复合后比表面积为原来的4.98倍.所制备的Bi_2WO_6/ZnO光催化剂比纯Bi_2WO_6和ZnO颗粒具有更高的瞬态光电流密度(约为4.5μA).综上,Bi_2WO_6和ZnO成功复合形成了异质结,降低了ZnO的禁带宽度,促进了电子和空穴的有效分离,从而提高了其光催化活性.  相似文献   

15.
近年来,有机污染物的问题变得越来越严重.为了解决该问题,人们研究和开发了许多有效的光催化剂.本工作采用水热法和化学沉积法合成了BiVO4/Ag3VO4梯型半导体材料,该复合材料在可见光下具有很强的氧化还原能力.其中40%BiVO4/Ag3VO4具有最佳的光催化降解性能,其降解速率为0.05588 min^-1,分别是BiVO4和Ag3VO4的22.76和1.76倍.并且其性能稳定,经过四次循环后其降解率仍可保持90%以上.BiVO4和Ag3VO4复合后,其催化性能得到增强,归因于形成了新型的梯型光催化机制,该方法促进了光生电荷的分离并延长了电荷的寿命,且通过PL测试和瞬态光电流响应证明了电荷的有效转移.X射线衍射(XRD)可以观察到Ag3VO4和BiVO4物相,没有其他成分.用扫描电子显微镜(SEM)和透射电子显微镜(TEM)进一步观察了该催化剂的结构和形貌,从SEM可以看出,Ag3VO4生长在BiVO4的上面,能谱分析也证明该催化剂仅包含Ag3VO4和BiVO4的各种元素,而不含其他杂质,TEM进一步证明了两种物质复合在一起,而不是机械混合.通过紫外-可见光漫反射光谱(UV-vis)测试可以得到BiVO4和Ag3VO4的吸收带边,进一步计算BiVO4的带隙和导带分别为2.41和0.455 eV,Ag3VO4的带隙和导带分别为2.20和0.04 eV,二者组成的异质结的带隙满足降解的条件.用荧光光谱(PL)和光电流研究了样品的光电特征,结果表明BiVO4/Ag3VO4光催化剂具有很高的载流子分离效率和很低的光电流电阻,这有助于光生载流子的运输.光催化降解甲基蓝实验表明,BiVO4/Ag3VO4具有很强的光催化降解速率(0.05588 min^-1),是BiVO4的22.6倍,Ag3VO4的1.76倍,而且经过四次循环后仍能保持很高的活性.通过XRD发现使用后的催化剂并没有发生变化,说明该催化剂具有良好的稳定性.高分辨X射线光电子能谱(XPS)不仅进一步说明了该催化剂成功复合后没有其他杂质元素,而且从各元素的结合能变化可以看出构成异质结后电子的流向,证实了光催化机制为梯型机制.光照射后,BiVO4和Ag3VO4产生电子空穴对,当催化剂受光激发后,电子从价带被激发到导带,并在价带留下空穴.当BiVO4和Ag3VO4复合后,在接触界面形成内电场,由于库仑相互作用,能带边缘弯曲等作用加速了Ag3VO4价带上某些空穴和BiVO4导带上电子的复合,从而阻止了Ag3VO4和BiVO4内部电子空穴对的复合,这有助于Ag3VO4导带上的电子和BiVO4价带上的空穴参与氧化还原反应.从捕获实验可以看出,本实验中空穴在光催化降解中起着最重要的作用,这与上述结论一致.  相似文献   

16.
采用水热法合成具有四角星形貌的钒酸铋,再将钒酸铋浸渍在碱溶液里二次水热,制备出BiVO_4/Bi_2O_3催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM),紫外-可见漫反射(UV-Vis DRS)等方法对样品进行表征。可见光下,BiVO_4/Bi_2O_3复合物的光催化降解罗丹明B性能及光电流响应均优于纯BiVO_4。这是由于BiVO_4/Bi_2O_3复合材料形成了异质结构,有效抑制了光生电子与空穴的复合效率。  相似文献   

17.
随着全球工业化进程的发展,环境污染问题日益严重,已经成为21世纪影响人类生存与发展的重要问题.光催化氧化技术被认为是解决环境问题最有应用前景的技术之一,已经成为环境领域的研究热点.众所周知,二硫化钼(MoS_2)可以被可见光激发产生电子-空穴对,但是由于其氧化还原电势并不高,抑制了氧分子活化的量子效率,且激发后的光生载流子容易复合,导致光催化效率不高.因此,迫切需要对MoS_2光催化材料进行修饰与改性,采用提高光催化过程中活性氧(ROSs)的量来提高其光催化活性.银钒氧化物(A VO_3,Ag_2V4O_(11),Ag3VO_4和Ag_4V_2O_7等)因其在锂电池、传感器和光催化剂领域的应用而引起了人们的关注.其中,Ag VO_3具有较窄的带隙和高度分散的价带,具有潜在的应用价值.本文采用水热法成功制备了AgVO_3/MoS_2复合光催化剂,并采用X射线粉末衍射、扫描电子显微、透射电子显微镜和紫外-可见漫反射光谱等表征技术研究了所制光催化剂的物相结构、样品形貌和光学性能.以四环素为研究对象,将其应用于AgVO_3/MoS 2复合光催化剂的降解实验.结果表明,随着AgVO_3质量比从1.0 wt%增加到3.0 wt%,所得催化剂的光催化活性不断提高;当进一步增加Ag VO_3的质量时,复合催化剂的活性逐渐降低.这是由于过多的AgVO_3的引入导致在光催化剂表面形成电子-空穴对复合中心,增加了载流子复合几率.因此,AgVO_3/MoS_2复合光催化剂中Ag VO_3的最佳质量比为3.0wt%,其降解速率常数为0.0087 min-1,分别是MoS_2(0.00509 min-1)和AgVO_3(0.00495 min~(-1))的1.71和1.76倍.由于AgVO_3改性后的MoS_2具有优异的光催化性能,能促进O2的吸附/活化,加速MoS 2表面生成H2O2的双电子氧还原反应,从而产生更多的ROSs.利用电子自旋共振光谱、POPHA荧光检测和自由基捕获实验相结合的方法来阐明ROSs的形成机理.同时,ROSs的产生会加速消耗AgOV_)3导带上的电子,为降解污染物留下更多的空穴.本文为表面催化工程促进ROSs生成的合理设计提供了新的思路,有望在环境治理中得到实际应用.  相似文献   

18.
利用类石墨氮化碳(g-C_3N_4)和亚稳相钙钛氧化物(CaTi_2O_5)固相法制备C_3N_4/CaTi_2O_5复合材料。利用X射线衍射(XRD)、金相显微镜、扫描电子显微镜(SEM)及附带能谱分析仪(EDS)和N2吸附-脱附对样品的显微结构和比表面积进行检测分析,并用紫外-可见吸收光度计(UV-Vis)测试了样品的光吸收性能,研究C_3N_4与CaTi_2O_5物质的量之比(nC_3N_4/nCaTi_2O_5)对C_3N_4/CaTi_2O_5复合样品的物相结构和微观形貌的影响,同时考察C_3N_4/CaTi_2O_5复合样品在可见光照射下光催化降解罗丹明染料效果。实验结果表明:相比纯C_3N_4和CaTi_2O_5样品,C_3N_4/CaTi_2O_5复合样品在可见光下具有较高的光催化性能,随着nC_3N_4/nCaTi_2O_5增加,样品的光催化降解率随之增加而后降低,当nC_3N_4/nCaTi_2O_5=1∶1时,样品的光催化降解率达到最大值99.5%,并且循环重复利用5次后,样品的光催化剂降解率仍几乎保持不变。复合样品光催化性能提高主要归因于复合能级结构有效地抑制了电子和空穴复合所致。  相似文献   

19.
草甘膦是一种广谱除草剂, 2015年世界卫生组织国际癌症研究机构宣布草甘膦可能对人类致癌(2A类).单斜白钨矿型BiVO_4是一种较广泛研究的可见光光催化剂,但由于其光生电子和空穴迁移慢且容易复合而导致其光催化活性低.此外,有研究表明, BiVO_4的(040)晶面易于光生载流子分离,从而提高其光催化性能.Bi_2S_3的带隙能为1.27 eV,能被全可见光(400-800 nm)激发.Bi_2S_3的导带和价带位置与BiVO_4匹配,能形成异质结,从而提高其光催化活性.本文以EDTA为导向剂, L-半胱氨酸为硫源和软模板,采用一锅水热法制备了单斜白钨矿型BiVO_4,主要以(040)晶面为暴露面的Bi_2S_3/BiVO_4复合光催化剂.采用钼锑抗分光光度法测定草甘膦最终光催化降解产物之一PO_4~(3-)浓度,来计算草甘膦的降解率.X射线衍射(XRD)结果表明, Bi_2S_3/BiVO_4复合光催化剂只含Bi_2S_3和BiVO_4两种成分,没有其他晶相存在.场发射扫描电子显微镜(FESEM)显示,纯BiVO_4为片状结构,随着Bi_2S_3复合量增加, Bi_2S_3/BiVO_4的形貌为小片组成的牡丹状;但Bi_2S_3复合量进一步增加, Bi_2S_3/BiVO_4颗粒聚集严重.XRD, FESEM和高分辨透射电子显微镜(HRTEM)结果表明, Bi_2S_3复合量对Bi_2S_3/BiVO4样品(040)和(121)面晶生长及形貌有显著影响.Bi_2S_3的复合提高了Bi_2S_3/BiVO_4对可见光的吸收能力,经计算BiVO_4和Bi_2S_3带隙能分别为2.42和1.27 eV.随着Bi_2S_3复合量增加, Bi_2S_3/BiVO_4的光催化活性逐渐提高,至1 mmol时最高,对草甘膦的降解率为纯BiVO_4的2.2倍;但随着Bi2S3复合量进一步增加, Bi_2S_3/BiVO_4的光催化活性反而下降,可能是由于Bi_2S_3量太多包覆在BiVO_4表面而Bi_2S_3光催化性能很差的缘故.瞬态光电流测试和电化学阻抗谱的结果证实, Bi_2S_3/BiVO_4比BiVO_4具有更有效的电荷分离和更快的界面电荷转移能力.活性成分捕获剂实验表明,加入空穴捕获剂EDTA或电子捕获剂K_2Cr_2O_7完全抑制了草甘膦的降解.ESR谱证明羟基自由基·OH的存在.通过计算,得出BiVO_4的价带电位(EVB=2.87 eV vs. NHE)比Bi_2S_3 (EVB=1.69 eV vs. NHE)正,而Bi_2S_3 (EVB=0.42 eV vs. NHE)的导带电位比BiVO_4 (EVB=0.45 eV vs. NHE)负,能带匹配,即光生电子从Bi2S3迁移至Bi VO4,光生空穴从BiVO_4迁移至Bi_2S_3,从而将光生电子与空穴有效分离利用,达到提高其光催化性能的目的.Bi_2S_3/BiVO_4样品对草甘膦的光催化降解活性提高,主要是由于Bi_2S_3/BiVO_4异质结结构的形成提高了其对可见光的吸收能力和电子空穴对的分离效率.此外, Bi_2S_3/BiVO_4具有相对稳定性和可重复使用性.该方法简单,可制备用于光催化降解有机污染、光催化裂解水和光催化还原二氧化碳等不同领域的高活性复合光催化剂.  相似文献   

20.
采用沉淀法制备了具有p-n异质结结构的AgBr/CuO可见光催化剂,对其结构进行了表征,通过甲基橙溶液的降解率评价了AgBr/CuO的光催化活性,并通过活性物种测试及能带结构分析推测了其光催化机理,采用3%(质量分数)溴水对使用后的AgBr/CuO进行了再生处理.结果表明,在可见光照射下,0.1gAgBr/CuO光催化剂30 min对甲基橙溶液(初始浓度为15 mg/L)的降解率高达92%,远高于同等条件下的AgBr.AgBr/CuO光催化活性提高的原因是AgBr与CuO的复合一方面使催化剂的禁带宽度变宽,提高了光生电子与光生空穴的氧化还原能力;另一方面,在两者之间形成了p-n型异质结结构,有利于光生电子的转移及光生电子与空穴的分离.采用绿色环保的溴水再生法可显著恢复催化剂的光催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号