首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来, 石墨型氮化碳(g-C3N4)作为一种n型半导体光催化剂材料, 由于具有较好的热稳定性和化学稳定性, 同时具有可调的带隙结构和优异的表面性质而备受人们关注. 然而, 传统的g-C3N4块体材料存在比表面积小、光响应范围窄和光生载流子易复合等缺陷, 制约着其光催化活性的进一步提高. 因此, 人们开发了多种技术对块体状g-C3N4材料进行改性,其中构建基于g-C3N4纳米薄片的异质结复合光催化材料被认为是强化g-C3N4载流子分离效率, 进而提高其可见光催化活性的重要手段. BiOI作为一种窄带隙的p型半导体光催化剂, 具有强的可见光吸收能力和较高的光催化活性, 同时它与g-C3N4纳米薄片具有能级匹配的带隙结构. 因此, 基于以上两种半导体材料的特性, 构建新型的BiOI/g-C3N4纳米片复合光催化剂材料不仅能够有效提高g-C3N4的可见光利用率, 而且还可以在n型g-C3N4和p型BiOI界面间形成内建电场, 极大促进光生电子-空穴对的分离与迁移效率.为此, 本文通过简单的一步溶剂热法在g-C3N4纳米薄片表面原位生长BiOI纳米片材料, 成功制备了新型的BiOI/g-C3N4纳米片复合光催化剂. 利用X射线衍射仪(XRD), 场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱和瞬态光电流响应谱对所合成复合光催化剂的晶体结构、微观形貌、光吸收性能和电荷分离性能进行了表征测试. XRD, SEM和TEM结果显示, 结晶完好的BiOI呈小片状均匀分散在g-C3N4纳米薄片表面; 紫外漫反射光谱表明, 纳米片复合材料的吸光性能较g-C3N4薄片有显著提升; 瞬态光电流测试证明, 复合材料较单一材料有更好的电荷分离与迁移性能.在可见光催化降解RhB的测试中, BiOI/g-C3N4纳米片复合光催化剂显示出了优异的催化活性和稳定性, 其光降解活性分别为纯BiOI和g-C3N4的34.89和1.72倍; 自由基捕获实验发现, 反应过程中的主要活性物种为超氧自由基(·O2-), 即光生电子主导整个降解反应的发生. 由此可见, 强的可见光吸收能力和g-C3N4与BiOI界面处形成的内建电场协同促进了g-C3N4纳米薄片的电荷分离, 进而显著提高了该复合材料的可见光催化降解活性. 此外, 本文初步验证了在BiOI/g-C3N4纳米片复合光催化体系内光生电荷是依据"双向转移"机制进行分离和迁移的, 而非"Z型转移"机制.  相似文献   

2.
石墨型氮化碳(g-C_3N_4)是一种新型非金属聚合物半导体材料,具有合理的能带结构、较好的稳定性及卓越的表面性质,因而受到了人们的广泛关注.目前,它作为光催化剂在降解污染物、光催化分解水产氢和光催化还原CO2方面正呈现出巨大的应用潜力.然而,g-C_3N_4可见光响应范围窄、比表面积较小、尤其是光生载流子易复合等缺陷制约着其光催化活性的进一步提高.针对以上问题,人们对g-C_3N_4进行了大量的改性研究,其中构建能级匹配的纳米半导体/g-C_3N_4异质结复合体是常用的有效改善g-C_3N_4光生电荷分离进而提高其光催化活性的手段.但现有相关文献往往忽略了复合体界面接触情况对光生电荷转移和分离的影响,从而在一定程度上影响对光催化性能的改善.本课题组前期工作表明,通过磷氧、硅氧功能桥的建立可加强TiO_2/Fe2O3,Zn O/BiVO_4纳米复合物的界面接触,从而促进光生电荷的迁移和分离,进而进一步提高纳米复合体的光催化活性.这样,通过构建磷氧桥有望改善TiO_2和g-C_3N_4的紧密连接,以促进光生电子由g-C_3N_4向TiO_2的迁移、改善光生载流子的分离,进而更加显著地提高g-C_3N_4的光催化活性.但是相关工作至今尚未见到报道.为此,本文通过简单的湿化学法成功地合成了磷氧(P–O)桥连的TiO_2/g-C_3N_4纳米复合体,并研究了P–O功能桥对TiO_2/g-C_3N_4纳米复合体光生电荷分离及其对光催化降解污染物及还原CO2活性的影响.结果表明,g-C_3N_4与适量的纳米TiO_2复合,尤其是g-C_3N_4与适量P–O桥连TiO_2的复合可进一步提高g-C_3N_4的光催化活性.基于气氛调控的表面光电压谱和光致发光谱等的分析,P-O桥连可促使g-C_3N_4的光生电子由g-C_3N_4向TiO_2转移,极大地促进了g-C_3N_4的光生电荷分离,因而使纳米复合体光催化活性大幅提高,其光催化降解2,4-DCP及还原CO2活性均为g-C_3N_4的3倍.此外,自由基捕获实验表明,·OH作为空穴调控的直接中间产物,其对2,4-DCP的降解起主导作用.  相似文献   

3.
利用原位沉积法将Bi OBr纳米片生长到g-C_3N_4表面,制得g-C_3N_4-Bi OBr p-n型异质结复合光催化剂。采用X射线衍射(XRD)、红外光谱(FTIR)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、紫外可见漫反射(UV-Vis-DRS)和荧光光谱(PL)等测试对光催化剂结构和性能进行表征。通过可见光辐照降解甲基橙水溶液检测评估复合光催化剂光催化活性。研究结果表明:复合光催化剂由Bi OBr和g-C_3N_4两相组成,Bi OBr纳米片在片状g-C_3N_4表面快速形核生长形成面-面复合结构。相比于纯相g-C_3N_4和Bi OBr,g-C_3N_4-Bi OBr复合材料具有更强可见光吸收能力,吸收带边红移。在可见光辐照100 min后,性能最佳的2:8 gC_3N_4-Bi OBr复合光催化剂光催化活性分别是纯相g-C_3N_4和Bi OBr的1.8和1.2倍,经过4次循环实验后,其降解率仍达84%,说明复合结构光催化剂催化性能和稳定性增强。复合光催化剂的荧光强度显著降低,说明光生载流子复合得到了有效抑制。复合光催化剂催化性能的提高归因于p-n型异质结促进电荷有效分离、抑制电子-空穴复合和吸收光波长范围的扩展,相比单一成分材料具有更好的催化活性和稳定性。自由基捕获实验证明,可见光降解甲基橙光催化过程中的主要活性成分为空穴,并据此提出了可能的光催化机理。  相似文献   

4.
光催化产氢可以直接将太阳能转化为化学能,是非常有前景的产氢技术之一.然而,光催化产氢的瓶颈在于如何提高光催化产氢效率和光催化剂的稳定性,以及降低产氢成本.因此,开发廉价、易于制备的产氢光催化剂引起人们广泛关注.作为一种非金属半导体光催化剂,石墨相氮化碳(g-C_3N_4)具有良好的物理化学性质,如良好的化学和热稳定性、极佳的光电性能、强的抗氧化能力等.更为重要的是,g-C_3N_4具有合适的能带结构,能够利用可见光.因此,g-C_3N_4已广泛应用于光催化降解、空气净化、光解水和光催化CO2还原等领域.然而,体相g-C_3N_4仍然暴露出一些缺点,例如比表面积小、光生电子-空穴对的复合率高和反应动力学差等.将体相g-C_3N_4剥离成g-C_3N_4纳米薄片是提高光催化效率的有效方法.薄层g-C_3N_4纳米片具有较高的比表面积,比体相的g-C_3N_4有更好的光生电子-空穴对分离效率.为了进一步提高g-C_3N_4的光催化性能,本文通过在薄层g-C_3N_4表面均匀分散Au纳米颗粒来控制电荷载流子的流动.并通过光催化产氢和污染物降解来评估金/薄层氮化碳(Au/monolayer g-C_3N_4)复合材料的光催化性能.所有的Au/薄层g-C_3N_4复合材料均显示出优于体相g-C_3N_4的光催化性能,其中1%Au/薄层g-C_3N_4复合光催化剂具有最高的产氢速率(565μmol g.1h.1),且具有最佳的污染物降解能力.这主要归结于热电子的注入,而不是肖特基结.Au纳米颗粒的成功引入带来了表面等离子共振(SPR)效应,SPR效应不仅能够提高光吸收效率,而且能够带来高效的热电子转移途径.热电子是从Au纳米颗粒表面注入到薄层g-C_3N_4纳米片的导带上.因此,Au/薄层g-C_3N_4复合光催化剂具有更高的光生电子-空穴对迁移和分离效率,以及更低的光生电子-空穴对复合几率.采用紫外可见光谱(UV-Vis)、光致发光光谱(PL)、光电流和阻抗等表征手段研究了Au/薄层g-C_3N_4复合光催化剂性能提升的原因.结果表明,相比于薄层g-C_3N_4纳米片,Au/薄层g-C_3N_4复合光催化剂具有更好的光电性能,因而光催化活性更高.此外,与薄层g-C_3N_4纳米片的光电流强度相比,Au/薄层g-C_3N_4复合光催化剂的光电流强度没有发生改变,这表明薄层g-C_3N_4纳米片导带上的光生电子不可能转移到Au纳米颗粒的表面.也就是说,肖特基结并没有参与到电子转移过程中,因此推测出整个光催化反应是热电子注入在起作用  相似文献   

5.
石墨相氮化碳(g-C_3N_4)纳米片因其廉价、易得、无毒等优点而在光催化领域被广泛应用和研究.但单一的g-C_3N_4存在光生电子与空穴易复合等缺陷,而助催化剂的存在可以促进电荷转移,延长载流子寿命,从而提高光催化性能.本文通过合成PtPd双金属合金纳米颗粒作为助催化剂,对g-C_3N_4纳米片光催化剂进行修饰以提高可见光照射下的光催化产氢速率.g-C_3N_4是以尿素为原材料,通过高温热缩聚和热刻蚀的方法合成, PtPd/g-C_3N_4复合光催化剂通过化学还原沉积法合成.对所获得的复合光催化剂进行了XRD测试并将结果与PdPt标准卡片进行了对比,结果表明,各峰的位置都能有较好的对应,说明成功合成了PdPt.采用TEM对PtPd/g-C_3N_4的形貌进行观察,发现g-C_3N_4呈薄片状,且PdPt颗粒较为均匀地分布在其表面.XPS测试发现, PtPd/g-C_3N_4复合样品中Pt和Pd元素的峰值较Pt/g-C_3N_4和Pd/g-C_3N_4均发生0.83eV的偏移,进一步说明合成了PtPd双金属合金纳米颗粒.DRS测试表明, g-C_3N_4的带隙宽度为2.69eV,而PtPd双金属合金纳米颗粒的负载有效地减小了禁带宽度,从而提高了光催化剂对光的利用率.光催化产氢性能实验发现,当g-C_3N_4负载PtPd双金属合金纳米颗粒后,光催化产氢速率大幅度提高,其中负载量为0.2wt%的PtPd/g-C_3N_4复合光催化剂的产氢速率最高,为1600.8μmol g~(–1)h~(–1),是纯g-C_3N_4纳米片的800倍.向光催化体系中添加10gK_2HPO_4后,产氢速率提高到2885.0μmolg~(–1)h~(–1).当二元合金中Pt:Pd比为1:1时, PtPd/g-C_3N_4复合光催化剂上的产氢速率最高,分别是Pt/g-C_3N_4和Pd/g-C_3N_4上的3.6倍和1.5倍.另外,在420nm处量子效率为5.5%.PtPd/g-C_3N_4复合光催化剂还表现出很好的稳定性,能够在完成4次光催化实验循环后仍然保持其良好的光催化活性.对PtPd/g-C_3N_4复合光催化剂进行了一系列光电化学表征.PL结果表明, PtPd/g-C_3N_4复合光催化剂与纯g-C_3N_4相比荧光强度减弱,说明PtPd/g-C_3N_4复合光催化剂有较慢的光生电子-空穴复合速率,这可以更有效地使电荷分离,从而提高光催化活性.根据光催化反应和表征分析结果提出了复合光催化剂上水分解产氢可能的机理,即PtPd/g-C_3N_4之间的协同作用有助于提高复合光催化剂的光催化活性.  相似文献   

6.
近年来,光催化技术作为一种"绿色"技术,在解决环境问题和能源危机等方面有着广泛的应用.新型可见光响应的半导体光催化材料g-C_3N_4具有二维(2D)纳米片结构,合适的禁带宽度(Eg=2.7 eV),优异的化学稳定性和低廉成本得到广泛的研究.但是,g-C_3N_4光催化剂本身的光生电子-空穴对复合几率高以及可见光响应范围窄等缺点,使其在光催化领域应用中具有一定的局限性.因此,提高g-C_3N_4半导体材料的光催化活性成为近年的研究热点.众所周知,Z型光催化体系的构筑不仅使材料具有较强的氧化还原能力而且有利于其光生电子-空穴的有效分离.但传统Z型光催化体系由于贵金属的引入、复杂的反应体系限制了其在实际领域中的应用.因此,构筑无电子介体的直接Z型光催化体系成为光催化领域的研究热点之一.与块状材料相比,零维(0D)量子点材料具有带隙可调性,可见光和近红外区域的强光收集能力等性能,在光催化领域具有广阔的应用前景.MoS_2量子点具有优异的光学和电子性能,因此,在催化、荧光检测、生物成像领域有重要的应用价值.我们结合水热和微乳溶液法合成了直接Z型g-C_3N_4/MoS_2 QDs(2D/0D)复合光催化材料,并采用X射线衍射(XRD)、X射线光电子能谱(XPS)、原子力显微镜(AFM),透射电子显微镜(TEM)以及紫外可见漫反射光谱(UV-vis)等表征方法对该催化剂的结构特征、微观形貌和光学性能进行分析.并研究了g-C_3N_4/MoS_2 QDs复合材料在可见光下的光催化性能.XRD,XPS结果表明,复合材料由g-C_3N_4,MoS_2组成.TEM和高斯分布结果表明,MoS_2 QDs具有良好的分散性,其尺寸小于5 nm,g-C_3N_4纳米片由具有皱纹和不规则折叠结构的薄层组成,在g-C_3N_4/MoS_2 QDs复合材料中可以看到少量的MoS_2量子点沉积在片状g-C_3N_4的表面上.光催化性能测试结果进一步表明,7%MoS_2 QDs/g-C_3N_4在可见光下具有优异的光催化性能:可见光照射12 min内,RhB的降解效率可达100%,降解速率常数是纯g-C_3N_4的8.8倍.为了进一步研究g-C_3N_4/MoS_2异质结光催化剂的光催化机理,用对苯醌、乙二胺四乙酸二钠和丁醇进行了自由基捕捉剂实验.结果表明,超氧自由基在降解有机染料过程中起主要作用,羟基自由基和空穴在增强的光催化性能中发挥相对较小的作用.通过光电流测试、材料价带导带位置计算以及·O_2~-和·OH定量实验结果并结合文献分析认为,MoS_2量子点和g-C_3N_4之间优良的界面接触以及由直接Z型结构产生的光生电荷载体的有效分离使其光催化性能得到显著提升.  相似文献   

7.
近年来,随着全球科学技术的进步和工业的不断发展,人们的经济生活水平有了极大的提高,但同时也造成能源短缺和环境污染问题,成为21世纪制约经济和社会进一步发展的严重瓶颈,因此开发和研究环保和可再生的绿色能源技术是一项紧迫任务.自首次报道用二氧化钛为电极、采用光电化学分解水制氢之后,光催化分解水制氢引起了人们极大的兴趣,并被认为是缓解全球能源问题的最有希望的解决方案之一.其中,实现有效的太阳能制氢生产中最关键因素是设计稳定、高效和经济的光催化剂,并且能够利用可见光区进行工作(入射到地球上46%的太阳光谱是可见光).聚合物石墨相氮化物(g-C_3N_4)作为一种对可见光响应的新型无机非金属半导体光催化剂,被认为是一种"可持续"有机半导体材料,目前已并被广泛应用于各种光催化反应中.但是由于其光生电子-空穴在动力学上具有相对较大的复合速率,单纯g-C_3N_4的光催化活性远远达不到人们的要求.因此,应该尽可能的提高电荷转移动力学来抑制g-C_3N_4中光生电荷的复合,从而提高光生电荷从g-C_3N_4转移至反应位点的迁移速率.在前期研究的基础上,本文利用钒氧酞菁(VOPc)分子通过p-p相互作用以修饰g-C_3N_4的表面和电子结构,从而提高其光生电子-空穴的分离效率,最终极大提升其可见光光催化制氢性能.本文采用紫外可见光谱(UV-vis),高分辨透射电镜(HRTEM),傅里叶变换红外光谱(FT-IR), X-射线能谱(XPS),稳态光致发光光谱(PL),时间分辨光致发光光谱(TRPL),光电流和阻抗等一系列表征手段研究了VOPc/g-C_3N_4(VOPc/CN)复合催化剂的结构和性质.FT-IR, XPS及mapping等结果表明, VOPc分子已经成功引入到g-C_3N_4表面且未对其晶相、电子结构及其纳米片结构产生显著影响;UV-vis结果显示, VOPc分子成功引入并通过非共价键的p-p作用连接.总之,引入VOPc分子即拓展了催化剂对可见光的响应区域,又有利于光生载流子的传递和光生电子-空穴对的有效分离.当引入4wt%的VOPc分子时, VOPc/CN复合光催化剂的产氢速率增加至65.52μmolh-1, 420 nm处的量子效率高达6.29%,是单纯g-C_3N_4的6倍.此外,该催化剂在可见光下连续照射反应20 h后,其光催化活性几乎没有降低,表现出良好的光化学稳定性.由于两者LUMO和HOMO轨道之间的良好匹配,在光催化过程中光生电子-空穴在VOPc和g-C_3N_4之间实现了空间分离,有效阻止了光生电子-空穴对的复合,因而g-C_3N_4光催化制氢性能显著提升.同时对比了利用NiS和Ni Px做助剂的g-C_3N_4的可见光光催化制氢性能.结果显示, VOPc/CN复合光催化剂具有较好的光催化性能.总之,本文通过一种简单、经济、有效的方法将两种新兴的功能材料有机地复合在一起,用于可见光照射下高效光催化制氢,为以后合理地开发用于太阳能转换的更为高效经济的材料提供了一个新的思路.  相似文献   

8.
g-C_3N_4是一种新型的稳定的半导体光催化材料,它可以通过热缩聚法、固相反应法、电化学沉积法和溶剂热法等制备.g-C_3N_4禁带宽度约为2.7 eV,吸收边在460 nm左右,具有合适的导带位置,可用作可见光响应制氢的光催化材料,但在实际应用中g-C_3N_4光催化性能较低,其原因可归纳为:(1)g-C_3N_4在吸收光子产生电子和空穴对后,光生载流子的传输速率较慢,容易在体相或表面复合,致使g-C_3N_4的量子效率较低;(2)材料在合成过程中易于结块,使g-C_3N_4的比表面积远小于理论值,严重削弱了g-C_3N_4光催化材料的制氢性能.目前已有很多关于g-C_3N_4改性的报道,但一些方法对材料的处理过程耗时较长或者合成过程较难控制.用助剂改性是提高光催化制氢活性的半导体材料的主要策略之一.合适的助剂可改进电荷分离和加速表面催化反应,从而提高光催化剂的制氢活性.虽然稀有金属或贵金属,如铂、金和银可大大提高g-C_3N_4的制氢速率,但由于其昂贵和稀缺性,因而应用严重受限.因此,开发成本低、储量丰富、高性能助剂来进一步提高制氢性能具有重要意义.NiS_2来源丰富、价格低廉.它可在酸性和碱性的环境保持相对较高的稳定性,且其表面电子结构表现出类金属特性.但它较难与半导体光催化剂形成强耦合和界面,通常需要水热等条件下合成.实验表明,g-C_3N_4表面存在着大量的含氧官能团及未缩合的氨基基团,为表面接枝提供了丰富的反应活性位点,因而可利用g-C_3N_4表面均匀分布的含氧官能团等和Ni~(2+)结合,再原位与S~(2-)反应,从而在g-C_3N_4上负载耦合紧密的NiS_2助剂,进一步提高复合材料的光催化制氢活性.本文采用低温浸渍法制备了NiS_2/g-C_3N_4光催化剂.NiS_2助剂在温和的反应条件下与g-C_3N_4光催化剂复合,可以防止催化剂结构的破坏,同时使得助剂均匀地分散,并紧密结合在催化剂表面,从而大大提高光催化剂的制氢性能.该样品制备过程为:(1)通过水热处理制备含氧官能团和较大比表面积的g-C_3N_4;(2)添加Ni(NO_3)_2前驱体后,Ni~(2+)离子由于静电作用紧密吸附在g-C_3N_4表面;(3)在80℃加入硫代乙酰胺(TAA),可在g-C_3N_4的表面紧密和均匀形成助剂NiS_2.表征结果证实成功制备NiS_2纳米粒子修饰的g-C_3N_4光催化剂.当Ni含量为3 wt%,样品表现出最大的制氢速率(116μmol h~(-1)g~(-1)),明显高于纯g-C_3N_4.此外,对NiS_2/g-C_3N_4(3 wt%)的样品进行光催化性能的循环测试结果表明:该样品在可见光照射下可以保持一个稳定的、有效的光催化制氢性能.根据实验结果,我们提出一个可能的光催化机理:即NiS_2促进了物质表面快速转移光生电子,使g-C_3N_4光生电荷有效分离.基于NiS_2具有成本低和效率高的优点,因而有望广泛应用于制备高性能的光催化材料.  相似文献   

9.
太阳能光催化技术广泛应用于处理环境污水中.Z型光催化剂体系具有较强的氧化还原能力,降低半导体的带隙,且使导带更负,价带更正,有效拓宽光生电子-空穴空间距离,抑制其复合,大大提高了光催化剂的催化性能,因此,构筑直接的Z型光催化体系已成为光催化领域的研究热点之一.TiO_2具有较好的光催化性能和良好的化学稳定性,但其禁带较宽,只能被太阳光中约占4%的紫外光激发,对太阳光中约占50%的可见光不响应,且光生电子-空穴易复合.g-C_3N_4是非金属光催化剂,具有较好的光催化活性,可见光吸收非常强,但比表面积较小,光生电子-空穴易复合.还原氧化石墨烯(RGO)具有大的比表面积和优异的传输载流子能力,可显著提高光催化剂的比表面积,同时降低电子空穴复合效率,从而在一定程度上改善光催化剂性能.大量研究证实, TiO_2/g-C_3N_4/RGO三元异质结的光催化性能明显优于单组份TiO_2, g-C_3N_4和二元TiO_2/g-C_3N_4光催化剂,但现有制备工艺复杂且耗时,因此,简易地构筑具有高光催化性能的Z型TiO_2/g-C_3N_4/RGO三元异质结仍具有挑战性.本文采用简易的直接电纺法构筑了高光催化活性的Z型TiO_2/g-C_3N_4/RGO三元异质结光催化剂,通过调节尿素的用量成功制备了一系列不同形貌的TiO_2/g-C_3N_4/RGO三元异质结.并采用X-射线衍射、红外光谱、拉曼光谱、X射线光电子能谱、扫描电子显微镜、透射电子显微镜、紫外-可见漫反射吸收光谱、氮气吸附-脱附测试、光电化学测试和荧光光谱等技术对所制备样品的晶型、组成、形貌、光捕获能力、载流子分离能力、比表面积、光电流、阻抗、光降解性能以及羟基自由基的生成进行系统性测试.以罗丹明B为目标探针分子,考察了模拟太阳光下所制备的光催化剂的光催化活性,结果表明,尿素添加量为0.6g时,电纺构筑的TiO_2/g-C_3N_4/RGO三元异质结在60min具有99.1%的光催化降解效率,显著优于纯TiO_2, g-C_3N_4,二元TiO_2/g-C_3N_4以及制备的其它TiO_2/g-C_3N_4/RGO三元异质结光催化剂.基于光电化学测试、活性物种淬灭实验和荧光光谱分析测试羟基自由基等分析结果,提出了一个合理的Z型增强光催化活性机理.  相似文献   

10.
光催化技术是目前解决能源和环境问题最具前景的手段之一,因此寻找高效光催化剂已成为光催化技术的研究热点.而在众多半导体催化剂中,廉价、环保且性能稳定的g-C_3N_4光催化剂在太阳光开发利用方面尤其引人关注.然而,由于g-C_3N_4的比表面小,活性位点少,以及光生电子/空穴对易复合等不足,严重导致其较低的光催化量子效率.因此,构造Z型体系和负载助催化剂等策略被广泛应用于提高g-C_3N_4光催化效率.在过去几年中,TiO_2,Bi_2WO_6,WO_3,Bi_2MoO_6,Ag_3PO_4和ZnO已经被成功证实可以与g-C_3N_4耦合而构造Z型光催化剂体系.其中,WO_3/g-C_3N_4光催化剂体系,具有可见光活性的WO_3导带中的光生电子和g-C_3N_4价带中的光生空穴容易实现Z型复合,从而保留了WO_3的强氧化能力和g-C_3N_4的高还原能力,最终大幅度提高了整个体系的光催化活性.在g-C_3N_4的各种产氢助催化剂中,由于常用的Pt,Ag和Au等贵金属的高成本和低储量等问题严重限制了它们的实际应用,所以近年来各种非贵金属助催化剂(包括纳米碳,Ni,NiS,Ni(OH)_2,WS_2和MoS_2等)得到了广泛的关注.我们采取廉价且丰富的Ni(OH)_x助催化剂修饰g-C_3N_4/WO_3耦合形成的Z型体系,开发出廉价高效的WO_3/g-C_3N_4/Ni(OH)_x三元产氢光催化体系.在该三元体系中,Ni(OH)_x和W0_3分别用于促进g-C_3N_4导带上光生电子和价带的光生空穴的分离及利用,从而使得高能的g-C_3N_4的光生电子在Ni(OH)_x富集并应用于光催化产氢,而高能的WO_3的光生空穴被应用于氧化牺牲剂三乙醇胺,最终实现了整个体系的高效光催化产氢活性及稳定性.我们通过直接焙烧钨酸铵和硫脲制备出WO_3纳米棒/g-C_3N_4,并采用原位光沉积方法将Ni(OH)_x纳米颗粒负载到WO_3/g-C_3N_4上.随后,我们采取X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱分析(XPS)和比表面和孔径分布等表征手段来研究光催化剂的结构与形貌;采取紫外-可见漫反射表征方法来研究其光学性能;采取荧光光谱,阻抗和瞬态光电流曲线等表征手段来测试光催化剂的电荷分离性能;采取极化曲线和电子自旋共振谱等表征手段来证明光催化机理;采取光催化分解水产氢的性能测试来研究光催化剂的光催化活性与稳定性.XRD,HRTEM和XPS表征结果,表明WO_3为有缺陷的正交晶系的晶体,直径为20-40纳米棒且均匀嵌入在g-C_3N_4纳米片上;Ni(OH)_x为Ni(OH)_2与Ni的混合物,其Ni(OH)_2与Ni的摩尔比为97.4:2.6,Ni(OH)_x粒径为20-50 nm且均匀分散在g-C_3N_4纳米片上,WO_3/g-C_3N_4/Ni(OH)_x催化剂界面之间结合牢固,其中WO_3和Ni(OH)_x均匀分布在g-C_3N_4上.紫外-可见漫反射表征结果表明,随着缺陷WO_3的负载量增加,复合体系的吸收边与g-C_3N_4相比产生明显的红移,而加入Ni(OH)_x助催化剂使得催化剂体系的颜色由黄变黑,明显地增加了可见光的吸收.荧光光谱,阻抗和瞬态光电流曲线结果表明,WO_3和Ni(OH)_x的加入能有效地促进光生电子/空穴的分离.极化曲线结果表明,掺入WO_3和Ni(OH)_x能降低g-C_3N_4的析氢过电位,从而提高光催化剂表面的产氢动力学.·O_2~-和·OH电子自旋共振谱表明成功形成了WO_3/g-C_3N_4耦合Z型体系.光催化分解水产氢的性能测试表明,20%WO_3/g-C_3N_4/4.8%Ni(OH)_x产氢效率最高(576μmol/(g·h)),分别是g-C_3N_4/4.8%Ni(OH)_x,20%WO_3/g-C_3N_4和纯g-C_3N_4的5.7,10.8和230倍.上述结果充分证明,Ni(OH)_x助催化剂修饰和g-C_3N_4/WO_3 Z型异质结产生了极好的协同效应,最终实现了三元体系的极高的光催化产氢活性.  相似文献   

11.
石墨相氮化碳(g-C_3N_4)具有较高的催化活性、良好的生物相容性、廉价易得、低毒性等特点,因而受到了广泛的关注.g-C_3N_4的禁带宽度为2.7 eV,可被可见光激发,相对于二氧化钛和氧化锌,它对可见光具有更高的太阳光利用率.尽管理论上g-C_3N_4是类似于石墨烯结构的二维材料,但通常情况下g-C_3N_4却是层层堆积起来的三维体相结构.从而导致了其比表面积降低,催化反应过程中与反应物接触面积小.同时又使光照下生成的载流子不能迅速传递到材料表面参与反应,大大降低了g-C_3N_4光生载流子的分离和传递效率.另外,作为一种可见光催化剂,g-C_3N_4的禁带宽度比一般的无机半导体光催化剂窄,仅能够吸收部分可见光.本文利用原位煅烧法制备了g-C_3N_4/rGO复合光催化剂,以罗丹明B和2,4-二氯酚为目标探针分子,考察了其可见光催化活性.这对于设计开发其他具有共轭大π键的光催化体系,具有一定的借鉴意义.X射线衍射(XRD),傅里叶变换红外光谱(FTIR),X射线光电子能谱(XPS)和激光共聚焦拉曼光谱(Raman)结果表明,氧化石墨烯成功地被还原为石墨烯,并成功地引入到了g-C_3N_4中去.在三聚氰胺聚合的过程中,石墨烯被夹杂在氮化碳的片层中间,有利于形成π-π共轭作用.复合光催化剂C_3N_4/rGO的带边发生明显的红移,在可见光区域内的吸收强度也有所增加,因而有利于其可见光催化活性的提高.通过外推法算得g-C_3N_4和C_3N_4/rGO-1复合光催化剂的带隙宽度分别为2.70和2.42eV.为了更好地考察复合光催化剂C_3N_4/rGO的能带结构的变化,通过光电化学的手段对其进行进一步的研究.莫特-肖特基结果表明该半导体是n型.计算得出g-C_3N_4和C_3N_4/rGO复合光催化剂的平带电势分别为-1.12和-0.85 V对甘汞标准电极,C_3N_4/rGO复合光催化剂的平带电位发生明显的正移.由此分别确定g-C_3N_4和C_3N_4/rGO复合光催化剂的价带底则位于1.58和1.74 V对甘汞标准电极.相比g-C_3N_4,g-C_3N_4/rGO复合光催化剂的价带位置的降低意味着其具有更强光氧化的能力,且比表面积的增大也有利于光催化反应.结果发现,石墨烯与g-C_3N_4的比例为1%时,复合样品的光催化性能最佳,对罗丹明B和2,4-二氯酚的降解性能均有提高.  相似文献   

12.
自从Fujishima和Honda利用TiO_2光阳极和Pt电极成功实现太阳能光电化学分解水之后,光催化被认为是解决环境污染和能源短缺两大问题最有前景的方法之一,因为该技术可以有效的利用太阳能这种地球上最丰富的能源来驱动多种不同的催化反应实现能源生产和环境净化,比如:水分解、CO_2还原、有机污染物降解和有机合成等。除了金属氧化物、金属硫化物和金属氮氧化物等多类金属化合物半导体光催化剂,近几年,石墨相氮化碳(g-C_3N_4)因其原料来源广泛、无毒、稳定以及相对较窄的带隙(2.7 eV)而具备可见光响应等特点,在光催化领域获得了广泛的重视。然而,gC_3N_4对太阳光谱中可见光的吸收效率较低且光生电子和空穴复合严重,导致其光催化活性处于较低水平。至今,研究人员已经开发出多种提高g-C_3N_4光催化活性的方法,如元素掺杂、微纳结构和异质结构设计和助催化剂修饰等。元素掺杂被证明是调节g-C_3N_4独特电子结构和分子结构的有效方法,可以大幅扩展其光响应范围,并促进光生电荷分离。特别地是,非金属元素掺杂以提高g-C_3N_4的光催化活性已经得到很好的研究。通常用于掺杂g-C_3N_4的非金属元素是氧(O)、磷(P)、硫(S)、硼(B)、卤素(F、Cl、Br、I)和其他非金属元素(如碳(C)和氮(N)自掺杂),因为这些非金属元素有着易于获取的原材料并可以较为简单的引入g-C_3N_4骨架结构中。在这篇综述文章中,作者首先介绍了g-C_3N_4的结构和光学性质,接着简要介绍了光催化剂的g-C_3N_4的改性;然后详细回顾了非金属掺杂改善g-C_3N_4光催化活性的进展,同时总结了光催化机理以期更好地理解光催化的本质并指导新型g-C_3N_4光催化剂的开发。最后,对g-C_3N_4光催化剂的后续研究进行了展望。  相似文献   

13.
石墨相氮化碳(g-C_3N_4)是一种在室温条件下最稳定的氮化碳.同时g-C_3N_4的带隙为2.7 eV,可以利用可见光催化很多反应,例如光解水、CO2还原、有机污染物降解和有机物合成.但普通体相g-C_3N_4的光催化性能不尽如人意,主要是由于普通体相材料的载流子复合效率高,可见光(450 nm)利用率低且比表面积小.众所周知,半导体的光催化性能与材料表面状态密切相关,因此可以控制合成条件来制备有利于光催化形貌的g-C_3N_4材料.普通体相g-C_3N_4材料的比表面积较小,约为10 m2/g,导致传质作用较差,光生电子-空穴复合严重,因此制备高比表面积的g-C_3N_4材料是目前研究的热点.我们发现在550 oC下将三聚氰胺和三聚氰酸一起煅烧可以一步热合成g-C_3N_4纳米片,合成温度较低,对材料带隙影响小,同时可以提高材料比表面积,从而极大地提高了材料的光降解苯酚性能.XRD测试发现,随着前驱体中三聚氰酸比例增加,材料的主峰从27.38°显著偏移到27.72°.这表明三嗪环面内相连构成CN平面,同时CN层也会有堆叠最终形成g-C_3N_4材料.通过BET测试,g-C_3N_4纳米片的比表面积为103.24 m2/g.采用AFM分析得到g-C_3N_4纳米片的厚度为3.07 nm.研究了该g-C_3N_4纳米片的光降解性能,结果显示,在可见光照射30 min后,使用这种g-C_3N_4纳米片作为催化剂的条件下,苯酚降解率达到最优的81%.在5次循环利用后,g-C_3N_4(1:9)的降解率还能保持在80%以上,说明材料有良好的循环稳定性.这主要得益于材料的纳米片结构,在对苯酚吸附时不会有很复杂的吸附与脱附过程.同时纳米片结构可为有机污染物的吸附和原位降解提供传质通道.光反应体系中的产物由HPLC检测,分析苯酚的降解产物及产物的产量可以大致推测苯酚可能的降解历程.在三聚氰酸作用下,CN聚合层弯曲,减少了CN层之间的相互结合,同时不会对材料的带隙产生影响.同时整个合成过程无需引发剂,也不会导致CN层的基本单元和连接方式发生改变,同时由于二维片层结构,提高了材料的电荷分离效率.通过苯酚的降解实验得知三聚氰胺与三聚氰酸的比例为1:9,在550 oC下煅烧得到的g-C_3N_4纳米片的光降解性能最优,同时具有很好的催化稳定性  相似文献   

14.
本文通过将Cu~(2+)掺入g-C_3N_4结构中成功制备了Cu/g-C_3N_4光催化剂,并进一步优化其光催化性能。同时,采用多种表征方法对Cu/g-C_3N_4光催化剂的结构、形貌、光学和光电性能进行了分析。X射线衍射(XRD)和X射线光电子能谱(XPS)结果表明制备的光催化剂为Cu/g-C_3N_4,且Cu的价态为+2。在可见光照射下,研究了不同铜含量的Cu/g-C_3N_4和gC_3N_4光催化剂的光催化活性。实验结果表明,Cu/g-C_3N_4光催化剂的降解能力显著高于纯相的g-C_3N_4。N_2吸附-解吸等温线表明,Cu~(2+)的引入对g-C_3N_4的微观结构影响不大,说明光催化活性的提高可能与光生载流子的有效分离有关。因此,Cu/g-C_3N_4光催化降解RhB和CIP性能的提升可能是由于Cu~(2+)可以作为电子捕获陷阱从而降低了载流子的复合速率。通过光电测试表明,在g-C_3N_4中掺入Cu~(2+)可以降低g-C_3N_4的电子空穴复合速率,加速电子空穴对的分离,从而提高了其光催化活性。自由基捕获实验和电子自旋共振(ESR)结果表明,超氧自由基(O_2~(·-))、羟基自由基(·OH)和空穴的协同作用提高了Cu/g-C_3N_4光催化剂的光催化活性。  相似文献   

15.
江静  曹少文  胡成龙  陈春华 《催化学报》2017,(12):1981-1989
利用半导体光催化技术将太阳能转化为清洁化学能源是解决能源危机和环境问题的最有潜力的途径之一.过去几十年,许多半导体包括氧化物、硫化物和氮化物均表现出光催化活性.然而,半导体光催化的实际应用仍然受制于其较低的太阳能转化效率.解决上述问题的方法之一是发展高效的可见光光催化制氢材料.近年来,石墨相氮化碳(g-C_3N_4)作为一种聚合物半导体材料,受到了光催化研究人员的广泛关注.g-C_3N_4具有可见光吸收能力、合适的导带价带位置、良好的热稳定性和化学稳定性,且制备方法简单和结构易调控,是一种极具潜力的光催化制氢材料.然而g-C_3N_4仍然仅能吸收波长450 nm以下的光,且其光生电子和空穴极易复合,因而光催化制氢效率较低.目前,研究人员采用了多种改性方法来增强g-C_3N_4的光催化性能,其中通过元素掺杂进行能带结构调控是一种非常有效的策略.而碱金属原子(Li,Na和K)被认为可有效进入g-C_3N_4的内部结构,通过引入缺陷来拓宽g-C_3N_4的光吸收范围和提高光生电荷的分离效率.不过到目前为止,尚未见系统的比较研究来深入理解不同碱金属元素掺杂的g-C_3N_4在可见光光催化制氢中的性能差异.本文采用X射线衍射(XRD)、氮气吸附-脱附测试、紫外可见漫反射光谱(UV-visDRS)、时间分辨荧光光谱(TRPL)、X射线光电子能谱(XPS)、光电化学测试和光催化制氢测试等表征和测试手段比较研究了不同碱金属元素掺杂的g-C_3N_4在结构、光学性质、能带结构、电荷转移能力和光催化性能等方面的差异.XRD结果表明,碱金属掺杂可导致g-C_3N_4的层间距离增大,且碱金属原子半径越大,g-C_3N_4的层间距离越大.氮气吸附-脱附测试结果表明,碱金属掺杂可提高g-C_3N_4的比表面积,其中Na掺杂的最高.UV-vis DRS和XPS谱结果表明,依Li,Na,K的顺序,碱金属掺杂导致g-C_3N_4带隙逐渐变窄,使得可见光吸收能力逐渐增强,且其导带和价带位置逐渐下移.TRPL和光电化学测试结果显示,碱金属掺杂有效抑制了g-C_3N_4的光生载流子复合和促进了光生载流子的转移,其中Na掺杂的g-C_3N_4的光生载流子利用效率最高.可见光光催化制氢实验表明,碱金属掺杂显著提升了g-C_3N_4的光催化性能,其中以Na掺杂的g-C_3N_4性能最佳,其产氢速率(18.7mmol h–1)较纯的g-C_3N_4(5.0mmol h–1)可提高至3.7倍.由此可见,g-C_3N_4的掺杂改性是一个对其微结构和能带结构的优化调控过程,最终获得最优的光催化性能.  相似文献   

16.
以合成的g-C_3N_4纳米片和Ag/TiO_2空心微球为原料,采用机械搅拌的方法构筑了g-C_3N_4/Ag/TiO_2三元复合光催化剂。采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外-可见光漫反射(UV-Vis DRS)和光致发光光谱(PL)对g-C_3N_4/Ag/TiO_2进行了表征。研究表明,g-C_3N_4/Ag/TiO_2是由Ag/TiO_2微球和g-C_3N_4纳米片复合而成的。与TiO_2相比,其可见光响应范围延长,光生载流子的分离速率加快。在室温下,用降解罗丹明B的反应考察了g-C_3N_4/Ag/TiO_2的可见光催化活性。研究表明,光照180 min时,g-C_3N_4(0.5%)/Ag/TiO_2显示了最高的光催化活性(91.9%),分别是TiO_2和Ag/TiO_2的7.5和1.8倍。光催化活性的提高与合理的异质结构建和Ag的导电性能有关。  相似文献   

17.
本文通过水热法合成球状Bi_2MoO_6,采用热处理法复合Bi_2MoO6和g-C_3N_4,制备出不同质量比例的g-C_3N_4/Bi_2MoO_6复合型光催化剂.利用X射线衍射、扫描电子显微镜、紫外-可见分光光度计、光致发光光谱仪等技术对所制备的光催化剂进行基本物性表征,分析了样品的微观结构、尺寸形貌和光学性质.g-C_3N_4与Bi_2MoO_6之间理想匹配的能带结构促进了光生载流子转移,进而提升光生电子和空穴的分离率,达到提高光催化活性的目的.g-C_3N_4/Bi_2MoO_6复合材料在可见光下展现出对罗丹明B高效的降解活性,其中Bi_2MoO_6与g-C_3N_4质量比为10%时展示出最佳的光催化降解性能,其降解速率分别为纯g-C_3N_4和Bi_2MoO_6的6.5和3.3倍.  相似文献   

18.
近年发展起来的低能耗、高效率的光催化技术为解决环境污染和能源短缺等问题提供了新途径.在众多光催化材料中,非金属石墨相氮化碳(g-C_3N_4)半导体材料因其化学稳定性和热稳定性优异、能带结构易调控、前驱体价格低廉等特点备受关注.然而,g-C_3N_4的光生电子-空穴对极易复合,比表面积较小,不能充分利用太阳光等,因而其光催化活性较低.目前,为了提高g-C_3N_4光催化性能,多采用金属或非金属元素掺杂、与其他物质形成异质结、与其他半导体材料进行共聚合等方式.其中,共聚合有利于调节g-C_3N_4内部电子结构,促进g-C_3N_4光生载流子的分离与迁移,而且具有高度离域π-π*共轭结构的导电聚合物更适合与g-C_3N_4进行共聚合,从而进一步提高g-C_3N_4的光催化性能.本文采用原位聚合法制备合成了导电聚吡咯(PPy)与g-C_3N_4的复合材料,并以10 mg L.1亚甲基蓝(MB)作为目标污染物评价其可见光催化性能.经X射线衍射、扫描电镜、透射电镜、比表面积、紫外-可见光谱等一系列表征分析可知,PPy/g-C_3N_4复合物(002)晶面衍射峰强度较g-C_3N_4减弱,表明PPy抑制了g-C_3N_4晶型生长,但未影响其晶型结构.不规则薄片状g-C_3N_4表面均匀地负载有非晶态PPy颗粒,复合物微观形貌发生变化.PPy与g-C_3N_4共轭芳香环层间堆积形成的介孔、大孔孔径和孔容积均增加,比表面积增大了7 m2 g.1,使目标污染物能与光催化剂表面活性物质充分接触反应.同时,PPy具有较强吸光系数,对可见光能完全吸收;PPy/g-C_3N_4复合物的可见光吸收边带发生红移,呈现出较g-C_3N_4更强的可见光吸收能力,提高对可见光的利用效率.光催化降解MB实验结果表明,在可见光(12 W LED灯)照射2 h后,含有0.75 wt%PPy的复合样品0.75PPy/g-C_3N_4表现出最佳光催化活性,MB降解效率为99%;且污染物光催化降解过程符合准一级动力学,反应速率常数(0.03773 min~(-1))约为同条件下g-C_3N_4(0.01284 min~(-1))的3倍.自由基捕获测试实验表明,g-C_3N_4和0.75PPy/g-C_3N_4均产生了·O~2~-自由基,但后者的·O2~-信号更强.这是因为PPy也可吸收可见光并激发出电子,该电子转移到g-C_3N_4导带,再与其本身的电子共同与O2反应生成·O_2-.然而只有0.75PPy/g-C_3N_4在光催化过程中产生了·OH自由基,是由于g-C_3N_4的价带(+1.4 eV)较H_2O/·OH(+2.38 eV vs.NHE)和OH~-/·OH(+1.99 eV vs.NHE)小,此价带上的h~+不能与H_2O和OH~-反应生成·OH,而是由生成的·O_2~-再与e~-和H~+反应产生,即·O_2~-+2H+2e~-CB→·OH+OH~-.本文最后分析了以·O_2~-和·OH作为主要活性物质的PPy/g-C_3N_4复合物光催化降解污染物的反应机理,PPy具有强导电性,可作为光生电子和空穴的传输通道,抑制其在g-C_3N_4表面的复合.  相似文献   

19.
首先在N-甲基吡咯烷酮溶液中超声剥离得到少层的MoS_2,将其与石墨相氮化碳(g-C_3N_4)复合,制得MoS_2/g-C_3N_4复合材料。采用X射线衍射(XRD),扫描电镜(SEM),X射线光电子能谱(XPS),傅里叶变换红外光谱(FTIR),Raman光谱,紫外-可见漫反射吸收光谱(DRS)和光致荧光(PL)技术对复合材料进行表征。可见光下考察MoS_2/g-C_3N_4复合材料光催化降解罗丹明B(Rh B)的活性,结果表明:将少量MoS_2与g-C_3N_4复合可明显提高光催化活性,且1%(w/w)MoS_2/g-C_3N_4复合物的光催化活性最高,可能的原因是MoS_2和g-C_3N_4匹配的能带结构,增大了界面间电荷的传输,降低了光生电子-空穴的复合,进而提高了光催化活性。  相似文献   

20.
近年来,工业社会的发展为人们的日常生活带来了便利,然而也引起了环境污染问题.尤其是抗生素的滥用,不仅会导致各种慢性疾病和微生物的传播,而且会使微生物对抗生素产生抵抗力.因此,寻找一种有效且环保的方法来解决抗生素残留问题至关重要.光催化技术作为一种"绿色"技术,具有充分利用太阳光、降低能耗和完全矿化有机物的突出优点,已被广泛应用于消除环境污染.光敏半导体材料AgCl具有良好的光响应范围、无毒、易制备等优点,成为光催化降解污染物过程中促进光催化剂活性的理想材料.然而,制备的AgCl纳米颗粒易于团聚并发生光腐蚀.目前,片状g-C_3N_4具有比表面积大和适当的带隙等优点.因此,构筑AgCl/g-C_3N_4异质结复合光催化剂不仅可以降低光生电子和空穴的复合速率,加快电子传输,还可以解决AgCl纳米颗粒易于团聚的问题.此外,聚邻苯二胺(PoPD)作为一种导电聚合物,具有高效的电子传输能力,用其包裹AgCl可以防止光腐蚀现象的发生.本文采用沉淀法和光引发聚合法合成了新型高效的PoPD/AgCl/g-C_3N_4复合材料,并以20 mg/L四环素作为目标污染物测试其可见光下的催化性能.用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)和比表面积(BET)测定等方法表征分析了催化剂的结构特征、微观形貌和光学性能. XRD分析发现, PoPD未影响AgCl/g-C_3N_4催化剂的晶型结构. XPS结果表明,复合材料由C, N, Ag, O, Cl元素组成,并能得到它们的元素价态.由SEM照片可看到不规则薄片状g-C_3N_4表面均匀地负载着被PoPD包裹的AgCl颗粒.根据BET测试结果,片状的g-C_3N_4比表面积比块状的增大4倍,使目标污染物能与光催化剂表面活性物质充分接触反应.光催化性能测试结果进一步表明, PoPD/AgCl-35/g-C_3N_4在可见光下具有优异的光催化性能:可见光照射120 min内,四环素的降解效率可达83.06%,降解速率常数是纯g-C_3N_4的7.98倍.循环实验表明,经过四次循环后催化剂仍具有优异的光催化降解性能,说明所合成的催化剂具有良好的稳定性.用抗坏血酸、乙二胺四乙酸和异丙醇捕获剂进行了自由基捕获实验,进一步研究PoPD/AgCl/g-C_3N_4催化剂的光催化机理.结果表明,超氧自由基和空穴在降解四环素过程中起主要作用,羟基自由基的作用相对较小.通过价带谱测试和带隙计算出材料的价导带位置,并对可能的机理进行了相应的分析.总之, PoPD/AgCl/g-C_3N_4光催化剂具有良好的稳定性和优异的光催化性能,为制备高稳定性复合光催化剂提供了一种新技术  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号