首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform a crystal-chemical analysis of compounds whose structures contain Os atoms surrounded by chalcogen atoms. Depending on the valence state, Os atoms bind four to seven X atoms (X = O, S, Se, Te) forming OsX n coordination polyhedra which can be tetrahedra (n = 4), trigonal bipyramids or square pyramids (n = 5), octahedra (n = 6), or pentagonal bipyramids (n = 7). In some compounds, pairs of OsO6 octahedra share edges to form Os–Os bonds. The influence of the Os valence state and the nature of the chalcogen atom on the composition and structure of the [Os a X b ] groups is discussed. On the basis of analysis of the crystal-structural data from the standpoint of the 18-electron rule, dependences of the Os–O and Os–Os bond orders on the bond lengths are proposed.  相似文献   

2.
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform crystal-chemical analysis of compounds containing complexes [Os a X b ] z(X = F, Cl, Br, I). Atoms of Os(V) at X = F and Cl, of Os(IV) at X = Cl, Br, and of Os(III) at X = Br were found to exhibit a coordination number of 6 with respect to the halogen atoms and to form OsX6octahedra. The coordination polyhedra of Os(III) for X = Cl, I are square pyramids OsX4. Each Os(III) atom forms one Os–Os bond; as a consequence, the OsBr6octahedra share a face in forming Os2Br3– 9complexes, while the OsX4pyramids (X = Cl, I) dimerize to produce [X4Os–OsX4]2–ions. The influence of the valence state of the Os atoms and of the nature of the halogen atoms on the composition and structure of the complexes formed and some characteristics of the coordination sphere of Os were considered.  相似文献   

3.
Using the Voronoi–Dirichlet partition procedure and the method of intersecting spheres, it is demonstrated that in the crystal structures of chalcogen-containing compounds, Pt(IV) atoms form only PtX6 octahedra (X = S, Se, Te), whereas in the case of Pt(III) and Pt(II), square coordination by X atoms is typical. The Pt(II) atoms can also form PtX5 square pyramids (X = S, Se), PtS6 octahedra, and PtTe3Pt3 quasi-octahedra in which a platinum atom is located in the trans-position to each coordinated tellurium atom. It was found that Pt(II) atoms in the PtX4 squares (X = S, Se), unlike square-coordinated Pt(III) atoms, can form one or two Pt–M bonds (M is a d metal) and 1 to 4 secondary Pt–Q bonds, where Q is an s metal or hydrogen. The main features of platinum stereochemistry depending on the metal valence state and coordination number (CN) and on the nature of the chalcogen atom were quantitatively characterized in terms of the Voronoi–Dirichlet polyhedra.  相似文献   

4.
Summary Two ditertiaryarsines,o-phenylenebis(diphenylarsine), (pdpa) ando-phenylenebis(di-p-tolylarsine), (pdta) yield some new complexes of palladium(II) and platinum(II). These are: square planar M(pdta)X2 · nCH2Cl2, [M = Pd, X = Cl, Br or NCS; M = Pt, X = Cl]; [Pt(A-A)2] X2 · nCH2Cl2, [(A-A) = pdta, X = Cl, NCS or ClO4; (A-A) = pdpa, X=ClO4] and [M2(A-A)2(NCS)2] (ClO4)2 · nCH2Cl2, [M = Pd, (A-A) = pdta; M = Pt, (A-A) = pdpa]; distorted octahedral M(pdta)2-X2nCH2Cl2, [M = Pd, X = I; M = Pt, X = Br or I] and [Pd(pdta)2(H2O)2](ClO4)2, and five coordinate [M(A-A)2X] ClO4 · nCH2Cl2, [M = Pd, Pt, (A-A) = pdta, X = I; M = Pt, (A-A) = pdpa, X = Br or I]. The [M2(A-A)2(NCS)2] (ClO4)2 · nCH2Cl2 complexes are novel in the sense that they contain bridging thiocyanate together with ionic perchlorate. The stereochemical assignments have been made on the basis of i.r. and u.v. spectra as well as conductance data.  相似文献   

5.
Three palladium (II) complexes with the isonitrosobenzoylacetoneimine (HIBI) ligand, Pd (p‐CH3C6H4IBI)2 (1), Pd (C6H5IBI)2 (2) and Pd2Cl2 (C6H5CH2IBI)2 · CHCl3 (3), were prepared and characterized by IR, Raman and X‐ray diffraction studies. The geometries around the palladium atoms in the complexes 1 and 2 are distorted trans‐PdN4 square planes, and the Schiff base ligands RIBI? are coordinated through their oximo‐nitrogen atoms and imino‐nitrogen atoms. The week Pd…H? C agostic interactions [Pd…H = 0.2764 nm] complete the hexacoordinate environment around palladium in the complex 1. The octahedral deformation of the classical square planar environment of the Pd atom is due to the week Pd…O (1b) interactions [Pd? O (1b) = 0.3157 (9) nm] in the complex 2. The complex 3 is a first example of binuclear complex with isonitrosoketoimine ligands, in which one of oximo groups is coordinated through oximo‐nitrogen and oximo‐oxygen atoms.  相似文献   

6.
Summary The compounds EtO2CCH2(Me)NCS2R (R = Me, ESDTM; R = Et, ESDTE) were prepared from sarcosine ethyl ester hydrochloride, CS2 and alkyl iodide in EtOH-H2O. These ligands react with palladium halides in benzene to yield the benzene solvates [Pd(ESDTR)X2nC6H6 (R = Me or Et; X = Cl or Br; n < 1), in which the dithioester molecule coordinates through both sulphur atoms. Ligands and complexes have been characterized by i.r. and 1H n.m.r. spectroscopy and by thermal analysis (t.g., d.t.g. and d.t.a.). The low stability of the adducts in both solution and solid phase is discussed on the basis of proton n.m.r. spectra. Thermal degradation of the 1∶1 complexes has been examined up to 1000° C. The first decomposition step involves release of alkyl halide to form the [Pd(ESDT)X] n (X = Cl or Br) intermediates, which successively decompose, finally giving palladium.  相似文献   

7.
A series of palladium(II) thiosaccharinates with triphenylphosphane (PPh3), bis(diphenylphosphanyl)methane (dppm), and bis(diphenylphosphanyl)ethane (dppe) have been prepared and characterized. From mixtures of thiosaccharin, Htsac, and palladium(II) acetylacetonate, Pd(acac)2, the palladium(II) thiosaccharinate, Pd(tsac)2 (tsac: thiosaccharinate anion) ( 1 ) was prepared. The reaction of 1 with PPh3, dppm, and dppe leads to the mononuclear species Pd(tsac)2(PPh3)2 · MeCN ( 2 ), [Pd(tsac)2(dppm)] ( 3 ), Pd(tsac)2(dppm)2 ( 4 ), and [Pd(tsac)2(dppe)] · MeCN ( 5 ). Compounds 2 , 4 , and 5 have been prepared also by the reaction of Pd(acac)2 with the corresponding phosphane and Htsac. All the new complexes have been characterized by chemical analysis, UV/Vis, IR, and Raman spectroscopy. Some of them have been also characterized by NMR spectroscopy. The crystalline structures of complexes 3 , and 5 have been studied by X‐ray diffraction techniques. Complex 3 crystallizes in the monoclinic space group P21/n with a = 16.3537(2), b = 13.3981(3), c = 35.2277(7) Å, β = 91.284(1)°, and Z = 8 molecules per unit cell, and complex 5 in P21/n with a = 10.6445(8), b = 26.412(3), c = 15.781(2) Å, β = 107.996(7)°, and Z = 4. In compounds 3 and 5 , the palladium ions are in a distorted square planar environment. They are closely related, having two sulfur atoms of two thiosaccharinate anions, and two phosphorus atoms of one molecule of dppm or dppe, respectively, bonded to the PdII atom. The molecular structure of complex 3 is the first reported for a mononuclear PdII‐dppm‐thionate system.  相似文献   

8.
9.
Characteristics of the Voronoi-Dirichlet polyhedra were used to perform the crystal-chemical analysis of 53 compounds containing osmium atoms surrounded by nitrogen atoms. Depending on the metal oxidation state, which varies from Os(II) to Os(VII), the coordination polyhedra formed by osmium atoms can be octahedra or trigonal prisms (OsN6), square pyramids (OsN4Os), tetrahedra (OsN4), or triangles (OsN3). The parameters of the Voronoi-Dirichlet polyhedra allow one to estimate quantitatively the main stereochemical features of Os atoms, depending on their oxidation state, and in controversial cases, they can be used to determine the oxidation state of osmium in the crystal structures.  相似文献   

10.
Ca3Pd4Bi8: Crystal and Electronic Structure Ca3Pd4Bi8 (a = 10.814(4), b = 17.050(6), c = 4.149(4) Å) was prepared by heating the elements at 900 °C and investigated by single crystal X‐ray methods. The compound crystallizes in a new structure type (Pbam; Z = 2). Six Bi atoms form distorted trigonal prisms around the Pd atoms. The polyhedra share common corners, edges or faces building up a three dimensional Pd, Bi network, whose holes are occupied by Ca atoms. A special feature is a distorted octahedron of four Pd and two Bi atoms connected via short homonuclear bonds. The metallic behaviour of the compound derived from the bond lengths is discussed by LMTO band structure calculations.  相似文献   

11.
The Voronoi-Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to carry out crystal chemical analysis of coordination of 1304 sorts of Mn atoms in the structure of 859 oxygen-containing compounds. The manganese atoms whose oxidation number varies from 2 to 7 were found to bind 4 to 8 oxygen atoms giving rise to the MnO n coordination tetrahedra (n = 4), square pyramids (n = 5), octahedra or trigonal prisms (n = 6), pentagonal bipyramids or one-cap trigonal prisms (n = 7), trigonal dodecahedra, cubes, square antiprisms, or hexagonal bipyramids (n = 8). The effect of the valence state and the coordination number of manganese atoms on the parameters of their VDP was studied. The existence of a general linear correlation between the solid angles of the VDP faces corresponding to Mn-O bonds and the corresponding interatomic distances, which vary over a broad range (1.55–3.12 Å), was established. The VDP characteristics can be used to determine the valence state of Mn atoms in the crystal structures and in the crystal chemical analysis of manganites with giant magnetoresistance.  相似文献   

12.
Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform crystal-chemical analyses of compounds containing complexes [Rh a X n ] z (X = F, Cl, Br). It was found that, irrespective of oxidation number (+3, +4, or +5), rhodium atoms always exhibit the coordination number 6 with respect to the halogen atoms and have octahedral coordination. The influence of site symmetry and the valence state of Rh on the distortion of RhX6 octahedra are considered. The electronic configuration of the Rh atoms is shown to influence the symmetry of their valence-force field within the crystal structure.  相似文献   

13.
Summary The following palladium(II) and platinum(ll) complexes of rhodanine (HRd) and 3-methylrhodanine (MRd) have been prepared: Pd(HRd)1.5Cl2, Pd(HRd)2Br2, Pd(HRd)2Br2 · 0.25 EtOH, M(MRd)2X2 [M = Pd, X = Cl (0.25 EtOH) or Br; M = Pt, X = Cl or Br], Pd(MRd)3Br2, and M(MRd)4(ClO4)2 (M = Pd or Pt). The ligands are coordinated to the metal through the thiocarbonylic sulphur atom. Pd(HRd)1.5Cl2 has presumably a structure such as (X = Cl or Br) complexes have a trans-planar coordination. Pd(MRd)2X2 (X = Cl or Br) complexes arecis-planar coordinated. Pd(MRd)3Br2 has presumably a square coordination with two MRd molecules and two CI ionscis-coordinated in the equatorial plane, and a MRd molecule and a Cl ion weakly bonded in apical position. The M(MRd)4(ClO4)2 complexes have square planar coordination.Author to whom all correspondence should be addressed.  相似文献   

14.
Palladium clusters Pd4(SEt)4(OAc)4(I) and Pd6(SEt)12(II) were synthesized and studied. Their structure was determined by X-ray diffraction analysis. For I, a= 9.774(2) Å, b= 10.821(2) Å, c= 13.061(3) Å, = 92.88(3)°, V= 1379.6(5) Å3, (calcd.) = 2.182 g/cm3, space group P21/n, Z= 4, N ref= 1558, and R= 0.031; for II, a= 10.581(1) Å, b= 10.584(2) Å, c= 11.478(2) Å, = 101.62(1)°, = 104.95(1)°, = 106.74(1)°, V= 1135.2(4) Å3, (calcd) = 2.007 g/cm3, space group P1, Z= 1, N ref= 2828, and R= 0.022. In cluster I, four Pd atoms form a planar cycle. The neighboring palladium atoms are bound by two acetate or by two mercaptide bridges, the Pd···Pd distances being 3.036–3.195 Å. In cluster II, Pd atoms form a planar six-membered cycle with Pd···Pd distances of 3.083–3.127 Å. The neighboring palladium atoms are bound by two mercaptide bridges. The formation of analogous clusters in solution was confirmed by IR spectroscopy.  相似文献   

15.
Geometric, electronic, and energy characteristics of the complexes formed in the CF4 ·nAIF3 (n = I or 2) and CBr4 ·nAIBr3 (n = 1, 2, or 4) systems have been determined by the semiempirical AM I method. Besides the donor-acceptor complexes, the CBr3 +...AIBr4 , CBr3 +...Al2Br7 , CBr22+...(AlBr4 )2, and CBr2 2+...(Al2Br7 )2 ionic complexes can be formed in the CBr4 ·nAlBr3 systems. In the cations and dications of polyhalomethanes (when Hal = Cl, Br, or l) in both the free and bound (included in ionic complexes) states, carbon atoms carry negative charges, the C-Hal bonds are substantially shortened, and the positive charges are located on one-coordinate halogen atoms. These cations and dications can be considered as halenium ions that differ from halenium salts with dicoordinate halogen atoms. In the cationic and dicationic complexes of the CBr4 ·nAlBr3 systems, the maximum positive charges on the Br atoms are 0.39 and 0.94, respectively. Fluorine-containing cations and dications have structures similar to those of carbenium ions, whereas in the CF4 ·nAIF3 systems (n = l or 2), only donor-acceptor complexes are formed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya. No. 3, pp. 554–560, March, 1996.  相似文献   

16.
Three new members of the copper/carboxylato/heterocyclic diimine family, namely [Cu(GLYO)(2, 2′‐bipy)]2 · nH2O (n = 4 ( 1 ) or 6 ( 2 ), H2GLYO = glycolic acid, 2, 2′‐bipy = 2, 2′‐bipyridine) and {[Cu(AcO)2(4, 4′‐bipy)] · 3H2O}n ( 3 ) (AcO = acetato, 4, 4′‐bipy = 4, 4‐bipyridine), have been synthesized and characterized by IR and electronic absorption spectroscopy, and the crystal structures have been determined by single crystal X‐ray analysis. 1 and 2 are composed of discrete dinuclear units in which each CuII atom is coordinated in a square pyramidal arrangement to the two nitrogen atoms of a bipyridine ligand, to bridging non‐carboxy oxygen atoms belonging to two glycolato ligands, and to one of the carboxy oxygen atoms of one of these glycolato ligands. The Cu··Cu distance is 3.0666(5)Å. Compound 3 consists of linear chains of dinuclear units in which each CuII is coordinated to one non‐bridging monodentate acetato ligand, to two acetato ligands that each bridge via a single oxygen atom, and to one nitrogen atom of each of two mutually trans bis‐monodentate 4, 4′‐bipyridine ligands that link the repeat units of the polymer. The coordination polyhedra are square pyramids, and the Cu··Cu distance within each dimeric repeat unit is 3.502(2)Å. The temperature dependence of their magnetic susceptibilities shows there to be weak antiferromagnetic interaction between the metal atoms of each dimer in all three complexes, with fitting parameter values of —2J = 1.3 cm—1 and g = 2.09 for 1 and 2 , and —2J = 1.4 cm—1 and g = 2.15 for 3 . The X‐band EPR spectra show signals corresponding to the dinuclear units.  相似文献   

17.
The Voronoi-Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to carry out crystal chemical analysis of 85 compounds containing 124 PtC n or PtC n Pt m coordination polyhedra in which the Pt-C and Pt-Pt bond lengths vary in the 1.82-2.43 and 2.58-2.98 Å ranges. The main stereochemical features of platinum are discussed depending on the nature (C or Pt) and the number (n varying from 1 to 10; m varying from 0 to 9) of atoms in the first coordination sphere. It is shown that the VDP parameters can be used to identify the aghostic Pt···H-C interactions in the crystal structure.  相似文献   

18.
Single crystals of distrontium(II) dicopper(II) tellurium(VI) hexa­oxide dibromide, Sr2Cu2TeO6Br2, were synthesized via solid state/gas phase reactions in sealed evacuated silica tubes. The building units are irregular SrO4Br3 polyhedra (a new type of coordination polyhedron around SrII), CuO5 square pyramids and TeO6 octa­hedra. The CuO5 square pyramids and the TeO6 octa­hedra together form layers in the bc plane bridged by Sr atoms. The Cu atoms are arranged to form puckered honeycomb layers. The Te atom lies on an inversion centre.  相似文献   

19.
Benzoylhydrazine, isonitrosoacetone react in ethanol with cobalt, nickel, copper halides andacetates to give the coordination compounds MX2(HL) · nH2O, MX2(HL)2 · nH2O, and ML2 · nH2O [M = Co,Ni, Cu; X = Cl, Br; HL = C6H5C(O)NHNC(CH3)CHNOH; n = 1-4]. The same reactions performed in the presence of sodium acetate and pyridine (pH 7-8) yield the complexes MLCl · nH2O and MPy2LCl ·nH2O (n = 1-4). All the complexes have a pseudooctahedral coordination geometry. The hydrazone HL behaves as a tridentate O,N,N-donor ligand. Thermolysis of the substances involves dehydration (70-90°C), deaquation (155-170°C) or deamination (175-195°C), and complete thermal decomposition (285-360°C).  相似文献   

20.
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform crystal-chemical analysis of compounds containing [Ir a X b ] z complexes (X = F, Cl, or Br). The coordination number of Ir atoms with respect to halogen atoms was found to be 6, irrespective of the oxidation state (III, IV, or V), and the coordination polyhedra formed by Ir were found to be always octahedra. The influence of the site symmetry and the valence state of the Ir atoms on the distortion of the IrX6 octahedra is considered. It is shown that characteristics of the VDP of Ir atoms can be used for quantitative estimation of the crystal-chemical role of Ir atoms in the halide structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号