首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A well chloride?water cluster [Cl6(H2O)8]6? in the complex [Cu3(DMAP)12Cl6?8H2O] (DMAP = N,N’-dimethyl p-aminopyridine) has been investigated structurally in the solid state. The chloride-water cluster [Cl6(H2O)8]6? is stabilized and orderly arranged by hydrogen bonds which display high symmetry. Six hosts [Cu(DMAP)4]2+ cationic form a cage-like aggregation, and chloride-water [Cl6(H2O)8]6? cluster located in the cage. Cl? anion play an important role to connect cubane-like (H2O)8 water cluster forming [Cl6(H2O)8]6? cluster, and on the other hand, to connect cage-like [Cu(DMAP)4]2+ cationic aggregation by means of ionic electrostatic interaction and long-range coordinate bond interaction. The formation of such a cluster anion may be available for insight into the nature of hydration of chloride in H2O.  相似文献   

2.
The PM3 quantum-mechanical method is able to model the magic water clusters (H2O)20 and (H2O)21H+. Results indicate that the H3O+ ion is tightly bound within the (H2O)20 cluster by multiple hydrogen bonds, causing deformation to the symmetric (H2O)20 pentagonal dodecahedron structure. The structures, energetics, and hydrogen bond patterns of six local minima (H2O)21H+ clusters are presented. © John Wiley & Sons, Inc.  相似文献   

3.
The synthesis and crystal structures of 3,5-dinitro-1H-pyrazolyl-4-carboxylic acid (H2dnpzc) and its four complexes with Ca2+, Ba2+, Na+ and K+ are reported in this paper. Ca(dnpzc) · 5H2O exhibits a 1D polymeric structure, whereas Ba(dnpzc) · 4H2O possesses a 2D structure. The structure of Na2(dnpzc) · 4H2O consists of 2D layers of [Na(dnpzc)]n and 1D chains of [Na(H2O)3]+n. K2(dnpzc) · H2O has a true 3D structure. It was observed that the doubly deprotonated ligand (dnpzc2–) can act as a versatile bridge to form polymeric structures by varying combinations of its 8 potential donor atoms (two carboxy O atoms, two pyrazolyl N atoms and four nitro O atoms). Particularly in the structure of K2(dnpzc) · H2O, all the 8 donor atoms of dnpzc2– take part in the coordination and as many as 10 potassium atoms are connected by one ligand.  相似文献   

4.
The effect of solvation on the conformation of acetylene has been studied by adding one water molecule at a time. Quantum chemical calculations of the H+(C2H2)(H2O)n (n=1-5) clusters indicate that the H2O molecules prefer to form the OH…π interaction rather than the CH…O interaction. This solvation motif is different from that of neutral (C2H2)(H2O)n (n=1-4) clusters, in which the H2O molecules prefer to form the CH…O and OH…C H-bonds. For the H+(C2H2)(H2O)n cationic clusters, the first solvation shell consists of one ring structure with two OH…π H-bonds and three water molecules, which is completed at n=4. Simulated infrared spectra reveal that vibrational frequencies of OH…π H-bonded O-H stretching afford a sensitive probe for exploring the solvation of acetylene by protonated water molecules. Infrared spectra of the H+(C2H2)(H2O)n(n=1-5) clusters could be readily measured by the infrared photodissociation technique and thus provide useful information for the understanding of solvation processes.  相似文献   

5.
An organicinorganic hybrid polyoxovanadoborate K6(CH3NH3)4[V12B18O54(OH)6-(H2O)]·2en·12H2O (1, en = ethylenediamine) has been synthesized under hydrothermal conditions and characterized by IR spectroscopy, element analyses, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) and single-crystal X-ray diffraction. Single-crystal structure analysis reveals that 1 consists of a cage-like polyoxovanadium borate [V12B18O54(OH)6(H2O)]10? cluster that is constructed from a puckered {B18O36(OH)6} ring sandwiched by two triangle {V6O18} units, in which a water molecule is confined in the middle of the cage-like cluster. Interestingly, 1 represents the rare example of extended 3-D framework constructed from [V12B18O54(OH)6-(H2O)]10? clusters through K+ cations.  相似文献   

6.
Despite utmost importance in understanding water ionization process, reliable theoretical results of structural changes and molecular dynamics (MD) of water clusters on ionization have hardly been reported yet. Here, we investigate the water cations [(H2O)n = 2–6+] with density functional theory (DFT), Möller–Plesset second‐order perturbation theory (MP2), and coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The complete basis set limits of interaction energies at the CCSD(T) level are reported, and the geometrical structures, electronic properties, and infrared spectra are investigated. The characteristics of structures and spectra of the water cluster cations reflect the formation of the hydronium cation moiety (H3O+) and the hydroxyl radical. Although most density functionals fail to predict reasonable energetics of the water cations, some functionals are found to be reliable, in reasonable agreement with high‐level ab initio results. To understand the ionization process of water clusters, DFT‐ and MP2‐based Born‐Oppenheimer MD (BOMD) simulations are performed on ionization. On ionization, the water clusters tend to have an Eigen‐like form with the hydronium cation instead of a Zundel‐like form, based on reliable BOMD simulations. For the vertically ionized water hexamer, the relatively stable (H2O)5+ (5sL4A) cluster tends to form with a detached water molecule (H2O). © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Hydration of alkylammonium ions under nonanalytical electrospray ionization conditions has been found to yield cluster ions with more than 20 water molecules associated with the central ion. These cluster ion species are taken to be an approximation of the conditions in liquid water. Many of the alkylammonium cation mass spectra exhibit water cluster numbers that appear to be particularly favorable, i.e., “magic number clusters” (MNC). We have found MNC in hydrates of mono- and tetra-alkyl ammonium ions, NH3(C m H2m+1)+(H2O) n , m=1–8 and N(C m H2m+1) 4 + (H2O) n , m=2–8. In contrast, NH2(CH3) 2 + (H2O) n , NH(CH3) 3 + (H2O) n1 and N(CH3) 4 + (H2O) n do not exhibit any MNC. We conjecture that the structures of these magic number clusters correspond to exohedral structures in which the ion is situated on the surface of the water cage in contrast to the widely accepted caged ion structures of H3O+(H2O) n and NH 4 + (H2O) n .  相似文献   

8.
We examine theoretically the three channels that are associated with the detachment of a single water molecule from the aqueous clusters of the alkaline earth dications, [M(H2O) n ]2+, M = Mg, Ca, Sr, Ba, n ≤ 6. These are the unimolecular water loss (M2+(H2O) n?1 + H2O) and the two hydrolysis channels resulting the loss of hydronium ([MOH(H2O) n?2]+ + H3O+) and Zundel ([MOH(H2O) n?3]+ + H3O+(H2O)) cations. Minimum energy paths (MEPs) corresponding to those three channels were constructed at the Møller–Plesset second order perturbation (MP2) level of theory with basis sets of double- and triple-ζ quality. We furthermore investigated the water and hydronium loss channels from the mono-hydroxide water clusters with up to four water molecules, [MOH(H2O) n ]+, 1 ≤ n ≤ 4. Our results indicate the preference of the hydronium loss and possibly the Zundel-cation loss channels for the smallest size clusters, whereas the unimolecular water loss channel is preferred for the larger ones as well as the mono-hydroxide clusters. Although the charge separation (hydronium and Zundel-cation loss) channels produce more stable products when compared to the ones for the unimolecular water loss, they also require the surmounting of high-energy barriers, a fact that makes the experimental observation of fragments related to these hydrolysis channels difficult.  相似文献   

9.
Structural features of clusters involving a metal ion (Li+, Na+, Be2+, Mg2+, Zn2+, Al3+, or Ti4+) surrounded by a total of 18 water molecules arranged in two or more shells have been studied using density functional theory. Effects of the size and charge of each metal ion on the organization of the surrounding water molecules are compared to those found for a Mg[H2O]62+• [H2O]12 cluster that has the lowest known energy on the Mg2+• [H2O]18 potential energy surface (Markham et al. in J Phys Chem B 106:5118–5134, 2002). The corresponding clusters with Zn2+ or Al3+ have similar structures. In contrast to this, clusters with a monovalent Li+ or Na+ ion, or with a very small Be2+ ion, differ in their hydrogen-bonding patterns and the coordination number can decrease to four. The tetravalent Ti4+ ionizes one inner-shell water molecule to a hydroxyl group leaving a Ti4+(H2O)5 (OH) core, and an H3O+• • • H2O moiety dissociates from the second shell of water molecules. These observations highlight the influence of cation size and charge on the local structure of hydrated ions, the high-charge cations causing chemical changes and the low-charge cations being less efficient in maintaining the local order of water molecules. Electronic Supplementary Material: Supplementary material is available for this article at http://dx.doi.org/10.1007/S00214-005-0056-2.  相似文献   

10.
Using a CO2 laser we have desorbed LiOH and NaOH from a solid target into an expanding inert gas jet pulse. Subsequently the beam was ionized by photons from a UV laser. Surprisingly, we observed in mass spectra metal water clusters and metal-hydride water clusters. For the metals M=Li, Na we find that the [M(H2O)n]+ peaks are dominant for small clusters, while for large clusters (n>20) the [MH(H2O)n]+ peaks are dominant. This indicates that the clathrate (H2O)20 may play an important role in the formation of metallo-water clusters.  相似文献   

11.
The cobalt atom in the structures studied is situated in the center of an octahedron involving donor atoms N and 3O organic ligands Heida or Bcegly (ions of hydroxyethyliminodiacetate or bis(carbamoylethyl)aminoacetate, respectively), water molecule oxygen atom, and a carboxylic atom of the neighboring ligand in the trans-position to the N atom, so that each (II) ion is linked with two organic anions. This results in a formation of infinite chains — uncharged [Co(Heida)(H2O)]n or cationic {[Co(Bcegly)(H2O)]+}n. In both cases, a molecule of crystallization water is present, and in the second case, the charge of the chains is compensated by perchlorate ions. Aminoacetic cycle of the Heida ligand is approximately coplanar to another such cycle, while a similar cycle of the Bcegly ligand is in the plane of one of six-membered aminopropionamide cycles.  相似文献   

12.
Crystals of bis(2‐ethyl‐3‐hydroxy‐6‐methylpyridinium) succinate–succinic acid (1/1), C8H12NO+·0.5C4H4O42−·0.5C4H6O4, (I), and 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium hydrogen succinate, C8H12NO+·C4H5O4, (II), were obtained by reaction of 2‐ethyl‐6‐methylpyridin‐3‐ol with succinic acid. The succinate anion and succinic acid molecule in (I) are located about centres of inversion. Intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds are responsible for the formation of a three‐dimensional network in the crystal structure of (I) and a two‐dimensional network in the crystal structure of (II). Both structures are additionally stabilized by π–π interactions between symmetry‐related pyridine rings, forming a rod‐like cationic arrangement for (I) and cationic dimers for (II).  相似文献   

13.
Ion clusters were formed in a temperature-variable high-pressure ion source from neat acetone and acetone/water mixtures and subjected to tandem mass spectrometry studies-unimolecular and collisionally activated mass-analyzed ion kinetic energy spectroscopy. The predominance of water loss from H+(H20)(A) l=3, where A = acetone, suggests that the solvation sphere around H3O+ does not close at l = 3, contrary to the case of acetonitrile or dimethyl ether. The results may be interpreted in terms of suggested ion structures which involve isomerization enroute to dissociation. The virtual absence of H/D scrambling in the collisionally activated dissociation of H3O+(DA)3, DA =acetone-d 6, and of D3O+(A)3 means that if enolization takes place, it is a rate-determining step in an irreversible isomerization. The stability of H+(H2O)(A)3 is a dominant factor in the observation of acetone loss from H+(H20)(A)4.  相似文献   

14.
In searching for H5O2+-centered water clusters, we employed vibrational predissociation spectroscopy and ab initio calculations. Structures of the clusters were characterized by the free- and hydrogen-bonded-OH stretches of ion cores and solvent molecules. Systematic examination of H+(H2O)5–7 in a supersonic expansion reveals the presence of both cyclic and noncyclic forms of H5O2+-centered water clusters. The proton transfer intermediate H5O2+(H2O)4 was identified, for the first time, by its characteristic hydrogen-bonded-OH stretches of the ion core at 3178 cm?1. Also discovered at n = 7 is the H5O2+-containing five-membered ring isomer, whose existence is evidenced by the observation of a bonded-OH stretching doublet at 3544 and 3555 cm?1 of the solvent molecules. The observations are in accord with ab initio calculations which forecast that H5O2+(H2O)4 and H5O2+(H2O)5 are, respectively, the lowest-energy isomers of protonated water hexamers and heptamers.  相似文献   

15.
A crystal structure of {H2O@CB[5]·(NH4PF6)2}·9(H2O) which consists of supramolecular chains self-assembled by water clusters and water capsules alternately was demonstrated. A water molecule is encapsulated in the cavity of CB[5] whose portals are occupied by two NH4 +, resulting in the formation of water capsule. The water clusters are made up of (H2O)4 and (H2O)5 clusters. The (H2O)4 cluster forms zigzag line and (H2O)5 features “Y-shape” structure. Moreover, anion channels consisting of six parallel supramolecular chains are occupied by PF6 ?.  相似文献   

16.
Coordination polymeric solid, {[Ag2(bpp)2(H2O)2](chd)·9H2O} n (1) (bpp = 1,3-bis(4-pyridyl) propane, H2chd = 1,4-cyclo-hexanedicarboxylic acid), has been obtained by the solution phase ultrasonic synthesis techniques. The structure established through X-ray structural analysis shows that the compound traps an interesting 1D water tape built by the alternating ??three-pointed star?? cage-like pentameric and D 2h tetrameric clusters (C2/c, Z = 4; a = 30.37(2) ?, b = 9.271(5) ?, and c = 18.89(1) ?; ?? = 128.47°; V = 4164(4) ?3). The novelty of the present complex is the rarely crystallographic example of the cage-shaped water pentamer, which is usually ascribed to a less-stable species. A first-principle density functional theory (DFT) calculation demonstrates that the interconnectivity between cage-like pentamers and D 2h tetramers is beneficial for contribution to the structural stabilization of these less-stable water cluster species.  相似文献   

17.
Hydration of gaseous guanidinium (Gdm+) with up to 100 water molecules attached was investigated using infrared photodissociation spectroscopy in the hydrogen stretch region between 2900 and 3800 cm–1. Comparisons to IR spectra of low-energy computed structures indicate that at small cluster size, water interacts strongly with Gdm+ with three inner shell water molecules each accepting two hydrogen bonds from adjacent NH2 groups in Gdm+. Comparisons to results for tetramethylammonium (TMA+) and Na+ enable structural information for larger clusters to be obtained. The similarity in the bonded OH region for Gdm(H2O)20 + vs. Gdm(H2O)100 + and the similarity in the bonded OH regions between Gdm+ and TMA+ but not Na+ for clusters with <50 water molecules indicate that Gdm+ does not significantly affect the hydrogen-bonding network of water molecules at large size. These results indicate that the hydration around Gdm+ changes for clusters with more than about eight water molecules to one in which inner shell water molecules only accept a single H-bond from Gdm+. More effective H-bonding drives this change in inner-shell water molecule binding to other water molecules. These results show that hydration of Gdm+ depends on its local environment, and that Gdm+ will interact with water even more strongly in an environment where water is partially excluded, such as the surface of a protein. This enhanced hydration in a limited solvation environment may provide new insights into the effectiveness of Gdm+ as a protein denaturant.  相似文献   

18.
The influence of carboxylic acids on water nucleation in the gas phase has been explored in the supersonic expansion of water vapour mixed with acetic acid (AcA) at various concentrations. The sodium‐doping method has been used to detect clusters produced in supersonic expansions by using UV photoionisation. The mass spectra obtained at lower acid concentrations show well‐detected Na+?AcA(H2O)n and Na+?AcA2(H2O)n clusters up to 200 Da and, in the best cooling expansions, emerging Na+?AcAm(H2O)n signals at higher masses and unresolved signals that extend beyond m/e values >1000 Da. These signals, which increase with increasing acid content in water vapour, are an indication that the cluster growth taking place arises from mixed water–acid clusters. Theoretical calculations show that small acid–water clusters are stable and their formation is even thermodynamically favoured with respect to pure water clusters, especially at lower temperatures. These findings suggest that acetic acid may play a significant role as a pre‐nucleation embryo in the formation of aerosols in wet environments.  相似文献   

19.
Ternary clusters (NH3)·(H2SO4)·(H2O)n have been widely studied. However, the structures and binding energies of relatively larger cluster (n > 6) remain unclear, which hinders the study of other interesting properties. Ternary clusters of (NH3)·(H2SO4)·(H2O)n, n = 0-14, were investigated using MD simulations and quantum chemical calculations. For n = 1, a proton was transferred from H2SO4 to NH3. For n = 10, both protons of H2SO4 were transferred to NH3 and H2O, respectively. The NH4+ and HSO4 formed a contact ion-pair [NH4+-HSO4] for n = 1-6 and a solvent separated ion-pair [NH4+-H2O-HSO4] for n = 7-9. Therefore, we observed two obvious transitions from neutral to single protonation (from H2SO4 to NH3) to double protonation (from H2SO4 to NH3 and H2O) with increasing n. In general, the structures with single protonation and solvated ion-pair were higher in entropy than those with double protonation and contact ion-pair of single protonation and were thus preferred at higher temperature. As a result, the inversion between single and double protonated clusters was postponed until n = 12 according to the average binding Gibbs free energy at the normal condition. These results can serve as a good start point for studies of the other properties of these clusters and as a model for the solvation of the [H2SO4-NH3] complex in bulk water.  相似文献   

20.
Structures and energetic characteristics of Li(H2O) n and Li+(H2O) n clusters with n = 1–6, 19, and 27 determined in the second order of the Møller-Plesset perturbation theory with 6–31++G(d,p) basis set are analyzed. The electron density redistribution, which takes place upon the electron addition to a Li+(H2O) n cluster, is found to be provided by hydrogen-bonded water molecules: initially almost neutral molecules, which are most distant from lithium, become negatively charged. The calculated energies of the electron capture by Li+(H2O) n clusters are approximated with the appropriate electrostatic model, and estimates of the lithium ionization energy in water clusters of various sizes are found. Similar estimates obtained earlier for sodium are made more accurate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号