首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polymers prepared by atom transfer radical polymerization (ATRP) contain end groups defined by the initiator used. Alkyl halides, used as initiators, lead to polymers with an alkyl group at one end and a halide as the other chain end. Using functionalized initiators such as 2‐hydroxyethyl 2‐bromopropionate, hydroxyl groups can be directly incorporated at one polymer chain end while the other end functionality remains a halogen. The direct displacement of the halogen end groups with hydroxyl groups was unsuccessful due to side reactions such as elimination (for polystyrene) or hydrolysis of ester functions (for polyacrylate). Another approach to generate hydroxyl end groups was based on the substitution of the halogen end groups by ethanolamine. This was successful for polystyrene but additional substitution at the backbone esters was observed in polyacrylates. Multiple substitution reactions could be avoided by using 4‐aminobutanol instead of 2‐aminoethanol. Hydroxyl terminated polyacrylates were also obtained by extending the polyacrylate chain end with one allyl alcohol unit in a one‐pot process by adding an excess of allyl alcohol at the end of e polymerization of acrylate.  相似文献   

2.
A new “grafting from” strategy for grafting of different monomers (methacrylates, acrylates, and acrylamide) on poly(vinylidene fluoride) (PVDF) backbone is designed using atom transfer radical coupling (ATRC) and atom transfer radical polymerization (ATRP). 4‐Hydroxy TEMPO moieties are anchored on PVDF backbone by ATRC followed by attachment of ATRP initiating sites chosen according to the reactivity of different monomers. High graft conversion is achieved and grafting of poly(methyl methacrylate) (PMMA) exhibits high degree of polymerization (DPn = 770) with a very low graft density (0.18 per hundred VDF units) which has been increased to 0.44 by regenerating the active catalyst with the addition of Cu(0). A significant impact on thermal and stress–strain property of graft copolymers on the graft density and graft length is noted. Higher tensile strain and toughness are observed for PVDF‐g‐PMMA produced from model initiator but graft copolymer from pure PVDF exhibits higher tensile strength and Young's modulus. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 995–1008  相似文献   

3.
Molecular Sieves (MS) were used as a recyclable support for atom transfer radical polymerization. The catalyst complex, CuBr2/ligand was supported on hydrated MS and used for the polymerization of benzyl methacrylate at room temperature in anisole. The polymerization using CuBr2/PMDETA (pentamethyl diethyltetraamine) catalyst that is physically held by the hydration of MS exhibited moderate control and produced catalyst free polymers (<0.1 ppm) with narrow molecular weight distribution (Mw/Mn ≤ 1.33). The polymerization occurred at the interface between the hydrated support and the solution containing initiator and monomer. The hydrated MS supported catalyst was recycled efficiently without a significant loss in activity. The polymerization proceeded in a “living”/controlled manner as was evident from first‐order time conversion plots. The split kinetics experiment affirmed that there was no propagation in the solution in the absence of the supported catalyst. The reaction order plot showed zero‐order dependence on the bulk initiator concentration in solution. The results of MS supported catalyst were compared to Na‐clay supported catalyst system and the improved results were attributed to high self‐diffusion coefficient and low diffusion activation energy of water on its surface. Published 2017.§ J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3875–3883  相似文献   

4.
In an attempt to assess the potential role of the hydroxyl radical in the atmospheric degradation of sulfuric acid, the hydrogen transfer between H2SO4 and HO* in the gas phase has been investigated by means of DFT and quantum-mechanical electronic-structure calculations, as well as classical transition state theory computations. The first step of the H2SO4 + HO* reaction is the barrierless formation of a prereactive hydrogen-bonded complex (Cr1) lying 8.1 kcal mol(-1) below the sum of the (298 K) enthalpies of the reactants. After forming Cr1, a single hydrogen transfer from H2SO4 to HO* and a degenerate double hydrogen-exchange between H2SO4 and HO* may occur. The single hydrogen transfer, yielding HSO4* and H2O, can take place through three different transition structures, the two lowest energy ones (TS1 and TS2) corresponding to a proton-coupled electron-transfer mechanism, whereas the higher energy one (TS3) is associated with a hydrogen atom transfer mechanism. The double hydrogen-exchange, affording products identical to reactants, takes place through a transition structure (TS4) involving a double proton-transfer mechanism and is predicted to be the dominant pathway. A rate constant of 1.50 x 10(-14) cm(3) molecule(-1) s(-1) at 298 K is obtained for the overall reaction H2SO4 + HO*. The single hydrogen transfer through TS1, TS2, and TS3 contributes to the overall rate constant at 298 K with a 43.4%. It is concluded that the single hydrogen transfer from H2SO4 to HO* yielding HSO4* and H2O might well be a significant sink for gaseous sulfuric acid in the atmosphere.  相似文献   

5.
6.
Dual intermolecular electron transfer (ELT) pathways from 4,4'-dimethoxybenzophenone (1) ketyl radical (1H*) in the excited state [1H*(D1)] to the ground-state 4,4'-dimethoxybenzophenone [1(S0)] were found in 2-methyltetrahydrofuran (MTHF) by observing bis(4-methoxyphenyl)methanol cation (1H+) and 4,4'-dimethoxybenzophenone radical anion (1*-) during nanosecond-picosecond two-color two-laser flash photolysis. ELT pathway I involved the two-photon ionization of 1H* following the injection of electron to the solvent. The solvated electron was quickly trapped by 1(S0) to produce 1*-. ELT pathway II was a self-quenching-like ELT from 1H*(D1) to 1(S0) to give 1H+ and 1*-. From the fluorescence quenching of 1H*(D1), the ELT rate constant was determined to be 1.0 x 10(10) M(-1) s(-1), which is close to the diffusion-controlled rate constant of MTHF. The self-quenching-like ELT mechanism was discussed on the basis of Marcus' ELT theory.  相似文献   

7.
8.
Hydrogen peroxide (HOOH) in ice and snow is an important chemical tracer for the oxidative capacities of past atmospheres. However, photolysis in ice and snow will destroy HOOH and form the hydroxyl radical (*OH), which can react with snowpack trace species. Reactions of *OH in snow and ice will affect the composition of both the overlying atmosphere (e.g., by the release of volatile species such as formaldehyde to the boundary layer) and the snow and ice (e.g., by the *OH-mediated destruction of trace organics). To help understand these impacts, we have measured the quantum yield of *OH from the photolysis of HOOH on ice. Our measured quantum yields (Phi(HOOH --> *OH)) are independent of ionic strength, pH, and wavelength, but are dependent upon temperature. This temperature dependence for both solution and ice data is best described by the relationship ln(Phi(HOOH --> *OH)) = -(684 +/- 17)(1/T) + (2.27 +/- 0.064) (where errors represent 1 standard error). The corresponding activation energy (Ea) for HOOH (5.7 kJ mol(-1)) is much smaller than that for nitrate photolysis, indicating that the photochemistry of HOOH is less affected by changes in temperature. Using our measured quantum yields, we calculate that the photolytic lifetimes of HOOH in surface snow grains under midday, summer solstice sunlight are approximately 140 h at representative sites on the Greenland and Antarctic ice sheets. In addition, our calculations reveal that the majority of *OH radicals formed on polar snow grains are from HOOH photolysis, while nitrate photolysis is only a minor contributor. Similarly, HOOH appears to be much more important than nitrate as a photochemical source of *OH on cirrus ice clouds, where reactions of the photochemically formed hydroxyl radical could lead to the release of oxygenated volatile organic compounds to the upper troposphere.  相似文献   

9.
Living radical polymerizations of styrene were performed under emulsion atom transfer radical polymerization conditions with latexes prepared by a nanoprecipitation technique recently developed for the stable free‐radical polymerization process. Latexes were prepared by the precipitation of a solution of low‐molecular‐weight polystyrene in acetone into a solution of a surfactant in water. The resulting particles were swollen with styrene and then heated. The effects of various surfactants and hydrophobic ligands, the reaction temperature, and the ligand/copper(I) bromide ratio were studied. The best results were obtained with the nonionic surfactant Brij 98 in combination with the hydrophobic ligand N,N‐bis(2‐pyridylmethyl)octadecylamine and a ligand/copper(I) bromide ratio of 1.5 at a reaction temperature of 85–90 °C. Under these conditions, latexes with good colloidal stability with average particle diameters of 200 nm were obtained. The molecular weight distributions of the polystyrenes were narrow, although the experimental molecular weights were slightly larger than the theoretical ones because not all the macroinitiator appeared to reinitiate. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4027–4038, 2006  相似文献   

10.
《Chemical physics》1987,111(1):33-36
The method of hyperspherical harmonics using an adiabatic separation between the hyper-radial coordinate and the hyperspherical angles is applied to the calculation of the ground state of the helium atom and the hydrogen negative ion. For each system the simple adiabatic separation provides much of the electron correlation energy. The non-adiabatic coupling is included by means of a perturbation treatment using both the Rayleigh—Schrödinger and Brillouin—Wigner approaches. These provide rapid convergence to the exact energy of −2.90372 au.  相似文献   

11.
A new operationally simple and robust protocol for the metal-free atom transfer radical reaction (ATRA) has been developed. Polychlorinated compounds were effectively reacted with unactivated terminal olefins to generate 1,3-dichlorinated adducts under microwave irradiation in the presence of silicon carbide (SiC) as a heating element. The present microwave-assisted ATRA proceeds under essentially neutral conditions; thus, polar functionalities are well tolerated. In addition, an oxygen or a nitrogen unit was introduced to the internal side of the carbon chain via nucleophilic cyclization of the 1,3-dichlorinated adducts, and single-step formation of the six-membered carbocycle was realized through cyclization of the intermediate radical. The present methodology provides an expeditious way to prepare synthetically useful molecules from simple and unactivated terminal olefins.  相似文献   

12.
A system with coupled catalytic cycles is described that allows radical reduction by catalyzed hydrogen atom transfer (CHAT) from transition metal hydrides. These intermediates are generated through H2 activation. Radical generation is carried out by titanocene catalyzed electron transfer to epoxides. The reaction provides a novel entry into the atom-economical reduction of radicals that has long been considered as a critical issue for the industrial application of radical chemistry.  相似文献   

13.
This work features the controllability of surface-initiated atom transfer radical polymerization (SI-ATRP) of methyl methacrylate, initiated by a multilayered 2-bromoisobutyryl moiety formed via diazonium chemistry. The thickness as a function of polymerization time has been studied by varying different parameters such as the bromine content of the initiator layer, polarity of reaction medium, ligand type (L), and the ratio of activator (Cu(I)) to deactivator (Cu(II)) in order to ascertain the controllability of the SI-ATRP process. The variation of thickness versus surface concentration of bromine shows a gradual transition from mushroom to brush-type conformation of the surface anchored chains in both polar and nonpolar reaction medium. Interestingly, it is revealed that very thick polymer brushes, on the order of 1 μm, can be obtained at high bromine content of the initiator layer in toluene. The initial polymerization rate and the overall final thickness are higher in the case of nonpolar solvent (toluene) compared to polar medium (acetonitrile or N,N-dimethylformamide). The ligand affects the initial rate of polymerization, which correlates with the redox potentials of the pertinent Cu(II)/Cu(I) complexes (L = Me(6)TREN, PMDETA, and BIPY). It is also observed that the ability of polymer brushes to reinitiate depends on the initial thickness and the solvent used for generating it.  相似文献   

14.
Unlike what has been theoretically proposed for ammonia oxidation with hydrogen peroxide, trimethylamine oxidation occurs with a concerted mechanism, which is favored even when an explicit water molecule is added or continuum solvent (water) is simulated.  相似文献   

15.
Diblock copolymers composed of monomers of tert-butyl acrylate and a side-chain azobenzenecontaining monomer, 4-[(E)-(4-nitrophenyl)diazenyl]phenyl prop-2-enoate were synthesized using atom transfer radical polymerization technique. Experimental strategy involved synthesis of block of tert-butyl acrylate macroinitiator followed by addition of second block of azobenzene-containing monomer to prepare desired block-copolymer. GPC analysis indicated narrow molecular weight distributions with degree of polymerization found in good agreement with targeted value. Prepared block copolymers of varying chain lengths can potentially be used to obtain morphologies that can find useful applications for biomedical applications including intriguing photo-switchable drug delivery systems.  相似文献   

16.
《European Polymer Journal》2002,38(4):759-769
Atom transfer radical polymerization was employed for the first time to prepare graft copolymer having by ethylene-vinyl acetate (EVA) copolymer as backbone and poly(methyl methacrylate) (PMMA) as branches. The polymerization of MMA was initiated by EVA carrying chloropropionate groups as macroinitiator, in the presence of copper chloride (CuCl) and bipyridine (bpy) at 80 °C. The macroinitiator was prepared by esterification of partially hydrolyzed EVA with 2-chloropropionyl chloride. Successful graft copolymerizations were performed both in toluene/γ-butyrolactone mixed solvent and in toluene solution, with grafting efficiency of 12% and 6%, respectively. Molecular weight distribution of the PMMA segments around 1.2 has been achieved with pure toluene solution. The ATRP graft copolymerization was supported by an increase of the molecular weight of the graft copolymers, as compared to that of the macroinitiator and also by their monomodal molecular weight distribution.  相似文献   

17.
Many photoactive metal complexes can act as electron donors or acceptors upon photoexcitation, but hydrogen atom transfer (HAT) reactivity is rare. We discovered that a typical representative of a widely used class of iridium hydride complexes acts as an H-atom donor to unactivated olefins upon irradiation at 470 nm in the presence of tertiary alkyl amines as sacrificial electron and proton sources. The catalytic hydrogenation of simple olefins served as a test ground to establish this new photo-reactivity of iridium hydrides. Substrates that are very difficult to activate by photoinduced electron transfer were readily hydrogenated, and structure–reactivity relationships established with 12 different olefins are in line with typical HAT reactivity, reflecting the relative stabilities of radical intermediates formed by HAT. Radical clock, H/D isotope labeling, and transient absorption experiments provide further mechanistic insight and corroborate the interpretation of the overall reactivity in terms of photo-triggered hydrogen atom transfer (photo-HAT). The catalytically active species is identified as an Ir(ii) hydride with an IrII–H bond dissociation free energy around 44 kcal mol−1, which is formed after reductive 3MLCT excited-state quenching of the corresponding Ir(iii) hydride, i.e. the actual HAT step occurs on the ground-state potential energy surface. The photo-HAT reactivity presented here represents a conceptually novel approach to photocatalysis with metal complexes, which is fundamentally different from the many prior studies relying on photoinduced electron transfer.

Upon irradiation with visible light, an iridium hydride complex undergoes hydrogen atom transfer (HAT) to unactivated olefins in presence of a sacrificial electron donor and a proton source.  相似文献   

18.
A new β-diketiminate ligand with 2,4,6-tri(phenyl)phenyl N-substituents provides protective bulk around the metal without exposing any weak C-H bonds. This ligand improves the stability of reactive iron(III) imido complexes with Fe═NAd and Fe═NMes functional groups (Ad = 1-adamantyl; Mes = mesityl). The new ligand gives iron(III) imido complexes that are significantly more reactive toward 1,4-cyclohexadiene than the previously reported 2,6-diisopropylphenyl diketiminate variants. Analysis of X-ray crystal structures implicates Fe═N-C bending, a longer Fe═N bond, and greater access to the metal as potential reasons for the increase in C-H bond activation rates.  相似文献   

19.
This paper reports on the preparation of poly(methyl methacrylate) (PMMA), poly(n-butyl acrylate) (PBA), and polystyrene (PS) brushes at the surface of conducting materials that were modified by the electrochemical reduction of a brominated aryl diazonium salt BF4-, +N2-C6H4-CH(CH3)-Br (D1). The grafted organic species -C6H4-CH(CH3)-Br was found to be very effective in initiating atom transfer radical polymerization (ATRP) of vinyl monomers. This novel approach combining diazonium salts and ATRP allowed PMMA, PBA, and PS brushes to be grown from the surface of iron electrodes. The polymer films were characterized in terms of their chemical structure by infrared reflection absorption spectroscopy and X-ray photoelectron spectroscopy. Atomic force microscopy studies indicated that the polymer brushes are densely packed. Contact angle measurements of water drops on PS and PMMA brushes were 88.1 +/- 2.0 and 70.3 +/- 2.1 degrees, respectively, which is consistent with the published wettability data for the corresponding polymer sheets.  相似文献   

20.
The catalytic ability of water, formic acid, and sulfuric acid to facilitate the isomerization of the CH(3)O radical to CH(2)OH has been studied. It is shown that the activation energies for isomerization are 30.2, 25.7, 4.2, and 2.3 kcal mol(-1), respectively, when the reaction is carried out in isolation and with water, formic acid, or sulfuric acid as a catalyst. The formation of a doubly hydrogen bonded transition state is central to lowering the activation energy and facilitating the intramolecular hydrogen atom transfer that is required for isomerization. The changes in the rate constant for the CH(3)O-to-CH(2)OH isomerization with acid catalysis have also been calculated at 298 K. The largest enhancement in the rate, by over 12 orders of magnitude, is with sulfuric acid. The results of the present study demonstrate the feasibility of acid catalysis of a gas-phase radical isomerization reaction that would otherwise be forbidden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号