首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flow rate analysis of a surface tension driven passive micropump   总被引:2,自引:0,他引:2  
Berthier E  Beebe DJ 《Lab on a chip》2007,7(11):1475-1478
A microfluidic passive pumping method relying on surface tension properties is investigated and a physical model is developed. When a small inlet drop is placed on the entrance of a microfluidic channel it creates more pressure than a large output drop at the channel exit, causing fluid flow. The behavior of the input drop occurs in two characteristic phases. An analytical solution is proposed and verified by experimental results. We find that during the first phase the flow rate is stable and that this phase can be prolonged by refilling the inlet drop to produce continuous flow in the microchannel.  相似文献   

2.
An on-chip micropump for portable microfluidic applications was investigated using mathematical modeling and experimental testing. This micropump is activated by the addition of water, via a dropper, to ionic polymer particles that swell due to osmotic effects when wetted. The resulting particle volume increase deflects a membrane, forcing a separate fluid from an adjacent reservoir. The micropump components, along with the microfluidic components, are fabricated using the contact liquid photolithographic polymerization (CLiPP) method. The maximum flow rate achieved with this pump is 17 microL per minute per mg of dry polymer particles of 355-425 microm in diameter. The pump flow rate may be controlled by adjusting the particle size and amount, the membrane properties, and the channel dimensions. The experimental results demonstrate good agreement with an analytical model describing the particle swelling and its coupling with resistive forces from the bending membrane, viscous flow in the microchannel, and interfacial effects. Key features of this micropump are that it can be placed directly on a microdevice, and that it requires only a small amount of water and no external power supply to function. Therefore, this pumping system is useful for applications in which a highly portable device is required.  相似文献   

3.
Molla S  Eskin D  Mostowfi F 《Lab on a chip》2011,11(11):1968-1978
Pressure drop in a gas-liquid slug flow through a long microchannel of rectangular cross-section was investigated. Pressure measurements in a lengthy (~0.8 m) microchannel determined the pressure gradient to be constant in a flow where gas bubbles progressively expanded and the flow velocity increased due to a significant pressure drop. Most of the earlier studies of slug flow in microchannels considered systems where the expansion of the gas bubbles was negligible in the channel. In contrast, we investigated systems where the volume of the gas phase increased significantly due to a large pressure drop (up to 1811 kPa) along the channel. This expansion of the gas phase led to a significant increase in the void fraction, causing considerable flow acceleration. The pressure drop in the microchannel was studied for three gas-liquid systems; water-nitrogen, dodecane-nitrogen, and pentadecane-nitrogen. Inside the microchannel, local pressure was measured using a series of embedded membranes acting as pressure sensors. Our investigation of the pressure drop showed a linear trend over a wide range of void fractions and flow conditions in the two-phase flow. The lengths and the velocities of the liquid slugs and the gas bubbles were also studied along the microchannel by employing a video imaging technique. Furthermore, a model describing the gas-liquid slug flow in a long microchannel was developed to calculate the pressure drop under conditions similar to the experiments. An excellent agreement between the developed model and the experimental data was obtained.  相似文献   

4.
We developed a microfluidic device to form monodisperse droplets with high productivity by anisotropic elongation of a thread flow, defined as a threadlike flow of a dispersed liquid phase in a flow of an immiscible, continuous liquid phase. The thread flow was anisotropically elongated in the depth direction in a straight microchannel with a step, where the microchannel depth changed. Consequently, the elongated thread flow was given capillary instability (Rayleigh-Plateau instability) and was continuously transformed into monodisperse droplets at the downstream area of the step in the microchannel. We examined the effects of the flow rates of the dispersed phase and the continuous phase on the droplet formation behavior, including the droplet diameter and droplet formation frequency. The droplet diameter increased as the fraction of the dispersed-phase flow rate relative to the total flow rate increased and was independent of the total flow rate. The droplet formation frequency proportionally increased with the total flow rate at a constant dispersed-phase flow rate fraction. These results are explained in terms of a mechanism similar to that of droplet formation from a cylindrical liquid thread flow by Rayleigh-Plateau instability. The microfluidic device described was capable of forming monodisperse droplets with a 160-microm average diameter and 3-microm standard deviation at a droplet formation frequency of 350 droplets per second from a single thread flow. The highest total flow rate achieved was 6 mL/h using the present device composed of a straight microchannel with a step. We also demonstrated parallel droplet formation by anisotropic elongation of multiple thread flows; the process was applied to form W/O and O/W droplets. The highly productive droplet formation process presented in this study is expected to be useful for future industrial applications.  相似文献   

5.
This paper presents a simple fluid handling technique for microchip immunoassay. Necessary solutions were sequentially injected into a microchannel by air-evacuated poly(dimethylsiloxane), and were passively regulated by capillary force at the inlet opening. For heterogeneous immunoassay, microchips are potentially useful for reduction of sample consumption and assay time. However, most of the previously reported microchips have limitations in their use because of the needs for external power sources for fluid handling. In this paper, an on-chip heterogeneous immunofluorescence assay without such an external power source is demonstrated. The microchip consisting of poly(dimethylsiloxane) (PDMS) and glass has a simple structure, and therefore is suitable for single-use applications. Necessary solutions were sequentially injected into a microchannel in an autonomous fashion with the power-free pumping technique, which exploits the high solubility and the rapid diffusion of air in PDMS. For deionized water, this method yielded flow rates of 3-5 nL s-1 with reproducibility of 4-10%. The inlet opening of the microchannel functioned as a passive valve to hold the solution when the flow was finished. Rabbit immunoglobulin G (rIgG) and human C-reactive protein (CRP) were detected using the microchannel walls as reaction sites. With the sample consumption of 1 microL and the assay time of approximately 20 min including the antibody immobilization step, the sandwich immunoassay methods for rIgG and CRP exhibited the limits of detection of 0.21 nM (0.21 fmol) and 0.42 nM (0.42 fmol), respectively.  相似文献   

6.
Meng DD  Kim CJ 《Lab on a chip》2008,8(6):958-968
We introduce a new mechanism to pump liquid in microchannels based on the directional growth and displacement of gas bubbles in conjunction with the non-directional and selective removal of the bubbles. A majority of the existing bubble-driven micropumps employs boiling despite the unfavorable scaling of energy consumption for miniaturization because the vapor bubbles can be easily removed by condensation. Other gas generation methods are rarely suitable for micropumping applications because it is difficult to remove the gas bubbles promptly from a pump loop. In order to eradicate this limitation, the rapid removal of insoluble gas bubbles without liquid leakage is achieved with hydrophobic nanopores, allowing the use of virtually any kind of bubbles. In this paper, electrolysis and gas injection are demonstrated as two distinctively different gas sources. The proposed mechanism is first proved by circulating water in a looped microchannel. Using H(2) and O(2) gas bubbles continuously generated by electrolysis, a prototype device with a looped channel shows a volumetric flow rate of 4.5-13.5 nL s(-1) with a direct current (DC) power input of 2-85 mW. A similar device with an open-ended microchannel gives a maximum flow rate of approximately 65 nL s(-1) and a maximum pressure head of approximately 195 Pa with 14 mW input. The electrolytic-bubble-driven micropump operates with a 10-100 times higher power efficiency than its thermal-bubble-driven counterparts and exhibits better controllability. The pumping mechanism is then implemented by injecting nitrogen gas bubbles to demonstrate the flexibility of bubble sources, which would allow one to choose them for specific needs (e.g., energy efficiency, thermal sensitivity, biocompatibility, and adjustable flow rate), making the proposed mechanism attractive for many applications including micro total analysis systems (microTAS) and micro fuel cells.  相似文献   

7.
The achievement of a higher degree of integration of components--especially micropumps and power sources--is a challenge currently being pursued to obtain portable and totally autonomous microfluidic devices. This paper presents the integration of a micro direct methanol fuel cell (μDMFC) in a microfluidic platform as a smart solution to provide both electrical and pumping power to a Lab-on-a-Chip system. In this system the electric power produced by the fuel cell is available to enable most of the functionalites required by the microfluidic chip, while the generated CO(2) from the electrochemical reaction produces a pressure capable of pumping a liquid volume through a microchannel. The control of the fuel cell operating conditions allows regulation of the flow rate of a liquid sample through a microfluidic network. The relation between sample flow rate and the current generated by the fuel cell is practically linear, achieving values in the range of 4-18 μL min(-1) while having an available power between 1-4 mW. This permits adjusting the desired flow rate for a given application by controlling the fuel cell output conditions and foresees a fully autonomous analytical Lab-on-a-Chip in which the same device would provide the electrical power to a detection module and at the same time use the CO(2) pumping action to flow the required analytes through a particular microfluidic design.  相似文献   

8.
Cellular functions are frequently exploited as processing components for integrated chemical systems such as biochemical reactors and bioassay systems. Here, we have created a new cell-based microsystem exploiting the intrinsic pulsatile mechanical functions of cardiomyocytes to build a cellular micropump on-chip using cardiomyocyte sheets as prototype bio-microactuators. We first demonstrate cell-based control of fluid motion in a model microchannel without check valves and evaluate the potential performance of the bio-actuation. For this purpose, a poly(dimethylsiloxane) (PDMS) microchip with a microchannel equipped with a diaphragm and a push-bar structure capable of harnessing collective cell fluid mechanical forces was coupled to a cultured pulsating cardiomyocyte sheet, activating cell-based fluid movement in the microchannel by actuating the diaphragm. Cell oscillation frequency and correlated fluid displacement in this system depended on temperature. When culture temperature was increased, collective cell contraction frequency remained cooperative and synchronous but increased, while displacement was slightly reduced. We then demonstrated directional fluid pumping within microchannels using cantilever-type micro-check valves made of polyimide. A directional flow rate of nL min(-1) was produced. This cell micropump system could be further developed as a self-actuated and efficient mechanochemical transducer requiring no external energy sources for various purposes in the future.  相似文献   

9.
Zhang K  Jian A  Zhang X  Wang Y  Li Z  Tam HY 《Lab on a chip》2011,11(7):1389-1395
We present a unique bubble generation technique in microfluidic chips using continuous-wave laser-induced heat and demonstrate its application by creating micro-valves and micro-pumps. In this work, efficient generation of thermal bubbles of controllable sizes has been achieved using different geometries of chromium pads immersed in various types of fluid. Effective blocking of microfluidic channels (cross-section 500 × 40 μm(2)) and direct pumping of fluid at a flow rate of 7.2-28.8 μl h(-1) with selectable direction have also been demonstrated. A particular advantage of this technique is that it allows the generation of bubbles at almost any location in the microchannel and thus enables microfluidic control at any point of interest. It can be readily integrated into lab-on-a-chip systems to improve functionality.  相似文献   

10.
A micropump controlled by EWOD: wetting line energy and velocity effects   总被引:1,自引:0,他引:1  
Shabani R  Cho HJ 《Lab on a chip》2011,11(20):3401-3403
A Laplace pressure gradient between a droplet and a liquid meniscus was utilized to create an on-demand constant flow rate capillary pump. Electrowetting on dielectric was implemented to induce the pressure gradient in the microchannel. For an initial droplet volume of 0.3 μL and a power of 12 nW a constant flow rate of 0.02 μL s(-1) was demonstrated. The effects of the wetting line energy on the static contact angle and the wetting line velocity on the dynamic contact angle in the pump operation were studied. Sample loading on-demand could be achieved by regulating an electric potential.  相似文献   

11.
Gerhardt T  Woo S  Ma H 《Lab on a chip》2011,11(16):2731-2737
We present the design of a microchannel with dynamic geometry that imparts different flow rates to different cells based on their physical properties. This dynamic microchannel is formed between a textured surface and a flexible membrane. As cells flow through the microchannel, the height of the channel oscillates causing periodic entrapment of the larger cells, and as a result, attenuating their velocity relative to the bulk liquid. The smaller cells are not slowed by the moving microstructure, and move synchronously with the bulk liquid. The ability of the dynamic microchannel to selectively attenuate the flow rate of eukaryotic cells is similar to a size-exclusion chromatography column, but with the opposite behavior. The speed of smaller substances is attenuated relative to the larger substances in traditional size-exclusion chromatography columns, whereas the speed of the larger substances that is attenuated in the dynamic microchannel. We verified this property by tracking the flow of single cells through the dynamic microchannel. L1210 mouse lymphoma cells (MLCs), peripheral blood mononuclear cells (PBMCs), and red blood cells (RBCs) were used as model cells. We showed that the flow rate of MLC is slowed by more than 50% compared to PBMCs and RBCs. We characterized the operation of the microchannel by measuring the velocity of each of the three cell types as a function of the pressures used to oscillate the membrane position, as well as the duty cycle of the oscillation.  相似文献   

12.
We demonstrate new principles of microfluidic pumping and mixing by electronic components integrated into a microfluidic chip. The miniature diodes embedded into the microchannel walls rectify the voltage induced between their electrodes from an external alternating electric field. The resulting electroosmotic flows, developed in the vicinity of the diode surfaces, were utilized for pumping or mixing of the fluid in the microfluidic channel. The flow velocity of liquid pumped by the diodes facing in the same direction linearly increased with the magnitude of the applied voltage and the pumping direction could be controlled by the pH of the solutions. The transverse flow driven by the localized electroosmotic flux between diodes oriented oppositely on the microchannel was used in microfluidic mixers. The experimental results were interpreted by numerical simulations of the electrohydrodynamic flows. The techniques may be used in novel actively controlled microfluidic-electronic chips.  相似文献   

13.
An extremely simple, power-free pumping method for poly(dimethylsiloxane)(PDMS) microfluidic devices is presented. By exploiting the high gas solubility of PDMS, the energy for the pumping is pre-stored in the degassed bulk PDMS, therefore no additional structures other than channels and reservoirs are required. In a Y-shaped microchannel with cross section of 100 microm width x 25 microm height, this method has provided flow rate of 0.5-2 nL s(-1), corresponding to linear velocity of 0.2-0.8 mm s(-1), with good reproducibility. As an application of the power-free pumping, gold nanoparticle-based DNA analysis, which does not rely on the cross-linking mechanism between nanoparticles, has been implemented in a microchannel with three inlets. Target 15mer DNA has been easily and unambiguously discriminated from its single-base substituted mutant. Instead of colorimetric detection in a conventional microtube, an alternative detection technique suitable for microdevices has been discovered-observation of deposition on the PDMS surfaces. The channel layout enabled two simultaneous DNA analyses at the two interfaces between the three laminar streams.  相似文献   

14.
Continuous flow synthesis of gold nanoparticles was demonstrated using a microchannel reactor with glucose reduction in aqueous alkaline medium. Particle size, morphology, and visual/optical properties of the dispersion liquid were controlled dynamically by tuning of the rate of NaOH addition. Characteristic star-like nanoparticles formed spontaneously as a quasi-stable state, but they changed the morphology to round shape and showed spectral change over time.  相似文献   

15.
Zhong R  Liu D  Yu L  Ye N  Dai Z  Qin J  Lin B 《Electrophoresis》2007,28(16):2920-2926
Microchip-based packed column SPE of DNA was performed using the microfabricated two-weir structure within a microchannel. We developed two methods to fabricate the two-weir structured glass chips: a "two-side etching/alignment" method and a simplified "one-side/two-step etching" method. The former method required a straightforward alignment step, while the latter approach comprised a simplified wet etching process using paraffin wax as the temporary protective layer. Both methods were convenient and rapid as compared to the previous approaches. Through a reversibly sealed bead-introduction channel, beads can be fed into or out of the chip columns, thus enabling refreshment of the packing materials. Using the proposed chip columns, highly efficient lambda-DNA extractions (average recovery >80%) were performed with good chip-to-chip reproducibility (RSD <10%). The on-chip SPE procedure was completed within 15 min at the flow rate of 3 microL/min and the bulk of the loaded DNA was eluted within a small volume of approximately 8 microL. Application of the microchip-based packed columns was demonstrated by purifying PCR-amplifiable genomic DNA from human hepatocellular carcinoma (HepG2) cells and human whole blood samples.  相似文献   

16.
We developed a novel flow control system for a nanofluidic chemical process. Generally, flow control in nanochannels is difficult because of its high-pressure loss with very small volume flow rate. In our flow control method, liquid pressure in a microchannel connected to the nanochannels is regulated by utilizing a backpressure regulator. The flow control method was verified by using simple structured microchip, which included parallel nanochannels. We found that the observed flow rate was three times lower than the value expected from Hagen-Poiseuille's equation. That implied a size-dependent viscosity change in the nanochannels. Then, we demonstrated mixing of two different fluorescent solutions in a Y-shaped nanochannel and also a proton exchange reaction in the Y-shaped nanochannel. The flow control method will contribute to further integration of nanochemical systems.  相似文献   

17.
Wang L  Kropinski MC  Li PC 《Lab on a chip》2011,11(12):2097-2108
This paper describes the experimental measurement and mathematical modeling of centrifugally-pumped flow in spiral microchannels. Here, the liquid is delivered by the rotation of a circular microchip as depicted before (X. Y. Peng, P. C. H. Li, H. Z. Yu, M. Parameswaran and W. L. Chou, Sens. Actuators, B, 2007, 128, 64-69). The spiral microchannel in it was specially designed to produce a constant centrifugal force component. From experimental measurements, it was found that the flow velocity inside the spiral microchannels was associated with the rotation speed only, but not with the length of the liquid column. The mathematical modeling of liquid flow was constructed based on solving the Navier-Stokes equations of incompressible flow formulated in a new orthogonal curvilinear coordinate system aligned with the channel geometry. The governing equations were simplified under various assumptions, rendering a mathematically-tractable physical model. In addition, a commercial computational fluid dynamics (CFD) program was used to simulate the flow in the spiral microchannel. The predicted liquid flow velocities from the mathematical model and the CFD program showed reasonable agreement with the experimental data. Under proper assumptions, the mathematical model gave a flexible and rather accurate analytical solution using much less computing power. The proposed study demonstrated the effectiveness of the spiral microchannel design in microfluidic applications using centrifugal force. With modifications, this study could be adapted to the simulation and modeling of other centrifugal-pumping microflow systems.  相似文献   

18.
Extraction of Pu(IV) with tri‐n‐butylphosphate is performed using a glass chip microchannel to evaluate the extraction rate. Two‐phase flow forms in the microchannel by introducing a solution of Pu(IV) and tri‐n‐butylphosphate with flow rates above 5 μL/min. The Pu(IV) extraction reaction proceeds at the interface between the two phases. To evaluate the extraction rate, the contact time between the two phases is varied from 0.48 to 4.8 s by changing the confluent length of the microchannel and the flow rate. The Pu concentration of each phase collected from the microchannel is measured with an alpha liquid scintillation counter, and the contact time dependence of Pu(IV) extraction is obtained. An extraction model based on diffusion in the microchannel and the reaction at the interface is proposed and applied to determine the extraction rate. The extraction process is assumed to follow pseudo‐first‐order kinetics, and the extraction rate constant of Pu(IV) is determined to be 1.5 × 10?2 cm/s. The investigation demonstrates that a microfluidic device can be a new tool to determine Pu(IV) extraction rates.  相似文献   

19.
A water-activated, effervescent reaction was used to transport fluid in a controllable manner on a portable microfluidic device. The reaction between sodium bicarbonate and an organic acid, tartaric acid and/or benzoic acid, was modeled to analyze methods of controlling the generation of carbon-dioxide gas for the purposes of pumping fluids. Integration and testing of the effervescent reaction pump in a microfluidic device was made possible by using elastomeric polymers as both photopolymerizable septa and removable lids. These materials combined to enable facile access to otherwise gas-tight devices. Based on theoretical predictions for 0.33 mg of sodium bicarbonate and a stoichiometric amount of organic acid, the pumping flow rate could be varied from 0.01 microL s(-1) to 70 microL s(-1). The flow rate is controlled by adjusting any or all of the particle size of the least soluble reactant, the amount of reactants used, and the type of organic acid selected. The tartaric acid systems rapidly produce carbon dioxide; however, the gas generation rates dramatically decrease over the course of the reaction. In contrast, carbon dioxide production rate in the benzoic acid systems is lower and nearly constant for several minutes. Water activation and direct placement on a microfluidic device are key features of this micropump, which is therefore useful for portable microfluidic applications.  相似文献   

20.
Porous glass electroosmotic pumps: design and experiments   总被引:1,自引:0,他引:1  
An analytical model for electroosmotic flow rate, total pump current, and thermodynamic efficiency reported in a previous paper has been applied as a design guideline to fabricate porous-structure EO pumps. We have fabricated sintered-glass EO pumps that provide maximum flow rates and pressure capacities of 33 ml/min and 1.3 atm, respectively, at applied potential 100 V. These pumps are designed to be integrated with two-phase microchannel heat exchangers with load capacities of order 100 W and greater. Experiments were conducted with pumps of various geometries and using a relevant, practical range of working electrolyte ionic concentration. Characterization of the pumping performance are discussed in the terms of porosity, tortuosity, pore size, and the dependence of zeta potential on bulk ion density of the working solution. The effects of pressure and flow rate on pump current and thermodynamic efficiency are analyzed and compared to the model prediction. In particular, we explore the important tradeoff between increasing flow rate capacity and obtaining adequate thermodynamic efficiency. This research aims to demonstrate the performance of EOF pump systems and to investigate optimal and practical pump designs. We also present a gas recombination device that makes possible the implementation of this pumping technology into a closed-flow loop where electrolytic gases are converted into water and reclaimed by the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号