首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This study investigates the effects of developmental stage and muscle type on the mobility and distribution of water within skeletal muscles, using low-field 1H-NMR transverse relaxation measurements in vitro on four different porcine muscles (M. longissimus dorsi, M. semitendinosus, M. biceps femoris, M. vastus intermedius) from a total of 48 pigs slaughtered at various weight classes between 25 kg and 150 kg. Principal component analysis (PCA) revealed effects of both slaughter weight and muscle type on the transverse relaxation decay. Independent of developmental stage and muscle type, distributed exponential analysis of the NMR T2 relaxation data imparted the existence of three distinct water populations, T2b, T21, and T22, with relaxation times of approximately 1–10, 45–120, and 200–500 ms, respectively. The most profound change during muscle growth was a shift toward faster relaxation in the intermediate time constant, T21. It decreased by approx. 24% in all four muscle types during the period from 25 to 150 kg live weight. Determination of dry matter, fat, and protein content in the muscles showed that the changes in relaxation time of the intermediate time constant, T21, during growth should be ascribed mainly to a change in protein content, as the protein content explained 77% of the variation in the T21 time constant. Partial least squares (PLS) regression revealed validated correlations in the region of 0.58 to 0.77 between NMR transverse relaxation data and muscle development for all the four muscle types, which indicates that NMR relaxation measurements may be used in the prediction of muscle developmental stage.  相似文献   

2.
The Carr-Purcell pulse sequence, with low refocusing flip angle, produces echoes midway between refocusing pulses that decay to a minimum value dependent on T(2). When the refocusing flip angle was π/2 (CP(90)) and τ>T(2), the signal after the minimum value, increased to reach a steady-state free precession regime (SSFP), composed of a free induction decay signal after each pulse and an echo, before the next pulse. When τ相似文献   

3.
Field gradient CPMG applied on postmortem muscles   总被引:3,自引:0,他引:3  
As a new approach, Carr-Purcell-Meiboom-Gill (CPMG) experiments were performed in vitro on porcine muscles (n = 10) during the period from 15 min to 85 min postmortem and again at 24 h postmortem in the absence (G = 0) and the presence of an external field gradient (G = 0.5*10(-3) T/m), which was applied throughout the CPMG sequence. The experiments were performed on low-field nuclear magnetic resonance (NMR) equipment (0.47 T). Due to the inclusion of different pre-slaughter treatments (adrenaline treatment and pre-slaughter exercise/electrical stunning), the muscles could be divided into (I) a group (n = 5) characterized by a reduced decrease in pH postmortem and a high water-holding capacity and (II) a group (n = 5) characterized by an increased rate of pH decrease postmortem and a low water-holding capacity. Distributed analysis of the CPMG data revealed two major relaxation populations with relaxation times about 30-40 and 200-500 ms, respectively, and comparison of data obtained with G = 0 and G = 0.5*10(-3) T/m revealed effects of the external gradient on the relaxation time of both the two relaxation populations, which implies that both diffusion and relaxation contributes to the relaxation of the two populations. At 24 h postmortem the effect of the external field gradient on the relaxation time was significantly affected by muscle group (I vs. II), which reveals local differences in water diffusion in the two meat qualities. Finally, the discriminatory power with regard to muscle group (I vs. II) was investigated for data acquired with G = 0 and G = F = 0.5*10(-3) T/m, and both the two types of data were found highly suitable for separation of muscles according to meat quality.  相似文献   

4.
The temperature dependences of nuclear magnetization and relaxation rates are reviewed theoretically and experimentally in order to quantify the effects of temperature on NMR signals acquired by common imaging techniques. Using common sequences, the temperature dependences of the equilibrium nuclear magnetization and relaxation times must each be considered to fully understand the effects of temperature on NMR images. The temperature dependence of the equilibrium nuclear magnetization is negative because of Boltzmann's distribution for all substances at all temperatures, but the combined temperature dependences of the equilibrium magnetization and relaxation can be negative, weak or positive depending on the temperature (T), echo time (T(E)), repetition time (T(R)), and the temperature dependences of the relaxation times T(1)(T) and T(2)(T) in a pulse sequence. As a result, the magnitude of the NMR signal from a given substance can decrease, increase or stay somewhat constant with increasing temperature. Nuclear thermal coefficients are defined and predictions for spin echo and other simple sequences are verified experimentally using a number of substances representing various thermal and NMR properties.  相似文献   

5.
In the tilted rotating frame (TRF), the transverse relaxation time T(2rho) depends strongly on the orientation of TRF with respect to the usual rotating frame. In the spin space, the relative orientation of the two reference frames modifies the contribution of various spin interactions to T(2rho) relaxation. Since the orientation of the frames and, to some extent, the role of the spin Hamiltonians in TRF are controllable experimentally, the T(2rho) relaxation can be made sensitive to molecular mechanisms related to the selected spin interaction. In this paper, the realization of a contrast Hamiltonian-dependent in solid-state NMR Imaging is proved. The solid-state imaging approach is based on the magic angle in the rotating frame. Some results on simple solid polymers are presented.  相似文献   

6.
为了探索利用核磁共振技术测量乙醇汽油低含水量的方法,测量了不同含水量乙醇汽油的核磁共振横向弛豫时间,发现横向弛豫时间不随含水量的变化而呈现一定规律性的变化,因而尝试加入NH4NO3、NaOH、CuSO4和MnCl2.4H2O来扩大含水量对核磁共振横向弛豫时间的影响。实验结果表明:加入MnCl2.4H2O可使横向弛豫时间随含水量的增加而增加,并拟合出了相应的经验公式。在此基础上提出了乙醇汽油低含水量的核磁共振测量方法,通过测量实例验证了这一方法的有效性和可靠性。  相似文献   

7.
Carr-Purcell-Meiboom-Gill (CPMG) measurements are the primary nuclear magnetic resonance (NMR) technique used for evaluating formation properties and reservoir fluid properties in the well logging industry and laboratory sample analysis. The estimation of bulk volume irreducible (BVI), permeability, and fluid type relies on the accurate interpretation of the spin-spin relaxation time (T(2)) distribution. The interpretation is complicated when spin's self-diffusion in an inhomogeneous field and restricted geometry becomes dominant. The combined effects of field gradient, diffusion, and a restricted geometry are not easily evaluated analytically. We used a numerical method to evaluate the dependence of the free and restricted diffusion on the system parameters in the absence of surface relaxation, which usually can be neglected for the non-wetting fluids (e.g., oil or gas). The parameter space that defines the relaxation process is reduced to two dimensionless groups: D* and tau*. Three relaxation regimes: free diffusion, localization, and motionally averaging regimes are identified in the (log(10)D*, log(10)tau*) domain. The hypothesis that the normalized magnetization, M*, relaxes as a single exponential with a constant dimensionless relaxation time T*(2) is justified for most regions of the parameter space. The numerical simulation results are compared with the analytical solutions from the contour plots of T*(2). The locations of the boundaries between different relaxation regimes, derived from equalizing length scales, are challenged by observed discrepancies between numerical and analytical solutions. After adjustment of boundaries by equalizing T*(2), numerical simulation result and analytical solution match each other for every relaxation regime. The parameters, fluid diffusivity and pore length, can be estimated from analytical solutions in the free diffusion and motionally averaging regimes, respectively. Estimation of the parameters near the boundaries of the regimes may require numerical simulation.  相似文献   

8.
Understanding tissue determinants that affect the nuclear magnetic resonance (NMR) properties of myocardium would improve noninvasive characterization of myocardial tissue. To determine if NMR relaxation times would reflect changes in tissue fat content, two experimental models were investigated. First, an idealized model using mixtures of beef skeletal muscle and beef fat was studied to investigate the effects of a wide range of tissue fat content. Second, myocardium with varying fat content from hogs raised to have varying degrees of ponderosity was analyzed. Tissue fat and water contents and spin-lattice (T1) and spin-spin (T2) relaxation times at 20 MHz were measured. The skeletal muscle/fat mixtures ranged in fat content from 35% to 95% with water content variations from 50% to 75%. Water content decreased as fat content increased. A significant inverse linear relationship was found between T1 and sample fat content (r = -0.997). Spin-spin relaxation times showed a significant positive curvilinear relationship with fat content (r2 = 0.96). In the animal experiments, 18 hogs were studied with samples obtained from both right and left ventricular (LV) free walls, with care taken to avoid epicardial fat. Myocardial fat content ranged from 3% to 25%. A significant correlation was found between LV fat content and corrected LV mass (r = 0.62), which suggested that the increase in LV mass could be explained, at least in part, by changes in myocardial fat content. Similar to the muscle/fat mixture model, a significant positive curvilinear relationship was found between myocardial T2 and tissue fat content (r2 = 0.67) for all the myocardial samples.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Nuclear magnetic resonance imaging (NMRI) techniques were employed to identify and selectively image biological films (biofilm) growing in aqueous systems. Biofilms are shown to affect both the longitudinal (T1) and transverse (T2) NMR relaxation time values of proximal water hydrogens. Results are shown for biofilm growth experiments performed in a transparent parallel-plate reactor. A comparison of biofilm distributions by both NMR and optical imaging yielded general agreement for both an open-flow system and an idealized porous system (the reactor without and with packed glass beads, respectively). The selective imaging of biofilm by relaxation NMRI is dependent upon the resolution of relaxation times for the fluid phases, dynamic range, and signal-to-noise ratio. For open-flow systems, the use of a rapid and quantitative T2-sorted NMRI technique was preferred. For porous systems where T2 values are generally more similar, a T1-weighted technique was preferred.  相似文献   

10.
Asymmetries in the manifold of spinning sidebands (ssbs) from the satellite transitions have been observed in variable-temperature 27Al MAS NMR spectra of alum (KAl(SO4)2.12H2O), recorded in the temperature range from -76 to 92 degrees C. The asymmetries decrease with increasing temperature and reflect the fact that the ssbs exhibit systematically different linewidths for different spectral regions of the manifold. From spin-echo 27Al NMR experiments on a single-crystal of alum, it is demonstrated that these variations in linewidth originate from differences in transverse (T2) relaxation times for the two inner (m=1/2<-->m=3/2 and m=-1/2<-->m=-3/2) and correspondingly for the two outer (m=3/2<-->m=5/2 and m=-3/2<-->m=-5/2) satellite transitions. T2 relaxation times in the range 0.5-3.5 ms are observed for the individual satellite transitions at -50 degrees C and 7.05 T, whereas the corresponding T1 relaxation times, determined from similar saturation-recovery 27Al NMR experiments, are almost constant (T1=0.07-0.10 s) for the individual satellite transitions. The variation in T2 values for the individual 27Al satellite transitions for alum is justified by a simple theoretical approach which considers the cross-correlation of the local fluctuating fields from the quadrupolar coupling and the heteronuclear (27Al-1H) dipolar interaction on the T2 relaxation times for the individual transitions. This approach and the observed differences in T2 values indicate that a single random motional process modulates both the quadrupolar and heteronuclear dipolar interactions for 27Al in alum at low temperatures.  相似文献   

11.
Fluorine is often used in drug-design efforts to enhance the pharmacokinetic properties of biologically active compounds. Additionally fluorine nuclei ((19)F) have properties that are well suited to current pharmaceutical NMR screening programs. Together, these considerations have motivated our interest in the utility of fluorine relaxation parameters to study ligand-receptor interactions. Here, we investigate the potential for cross-correlated relaxation effects between the (19)F anisotropic chemical-shift and (19)F-(1)H dipole-dipole relaxation mechanisms to help pinpoint and quantify exchange processes. Methods are proposed and demonstrated in which the magnitude ratio of the transverse cross-correlation rate constant eta(xy) and the fluorine transverse relaxation rate constant, R(2), help estimate the exchange rate constant for ligand-binding equilibria. These exchange rate constants provide estimates of the ligand dissociation rate constants k(off) and can thus provide a means for rank-ordering the binding affinities of ligands identified in pharmaceutical screens.  相似文献   

12.
根据经典 Bloch方程的解析解以及考虑辐射阻尼效应的Bloch方程的数值解,通过解析分析和数值模拟,从理论上研究了在射频场扰动下以及在辐射阻尼效应的作用下纵向弛豫对核磁共振线型的影响.结果表明:①射频场的扰动和辐射阻尼效应将导致纵向磁化与横向磁化的耦合,从而使纵向弛豫对线型产生了一定的影响.②在射频场的扰动下,峰强和线宽分别为2M0sin(θ)T1T2/(T1+T2)和(T1+T2)/(2πT1T2),即纵向弛豫将使谱线的峰强增大、线宽变窄,且影响程度随着比值T2/T1的减小而增大,峰强最大可增加1倍而线宽最多可减小1/2.③在强辐射阻尼效应的作用下,纵向弛豫会使谱线的峰强降低,降低的幅度与扳转角θ以及比值T2/T1密切相关.当θ从0到3π/4时,降低的幅度均较小,只有当θ>3π/4时,降低的幅度才开始逐渐变大,且当 θ接近π时,降低的幅度急剧增大.谱线峰强降低的幅度与T2/T1呈较严格的正比关系,即T1越接近T2,峰强下降得越显著.  相似文献   

13.
Ordered tissue like tendon is known to exhibit the magic-angle phenomenon in magnetic resonance investigations. Due to the anisotropic structure the transverse relaxation time T(2) depends on the orientation of the tendon in the magnetic field. In medical imaging, relaxation measurements of tendon orientation are restricted by the size of the object and the space available in the magnet. For humans, tendon orientation can only be varied within small limits. As a consequence, the magic-angle phenomenon may lead to a misjudgement of tendon condition. It is demonstrated that the NMR-MOUSE (mobile universal surface explorer), a hand-held NMR sensor, can be employed to investigate the anisotropy of T(2) in Achilles tendon in vivo. The NMR-MOUSE provides a convenient tool for analyzing the correlation of T(2) and the physical condition of tendon.  相似文献   

14.
The structural and magnetic properties and spin dynamics of dextran coated and uncoated γ-Fe(2)O(3) (maghemite) nanoparticles have been investigated using high resolution transmission electron microscopy (HRTEM), (57)Fe nuclear magnetic resonance (NMR), M?ssbauer spectroscopy and dc magnetization measurements. The HRTEM observations indicated a well-crystallized system of ellipsoid-shaped nanoparticles, with an average size of 10 nm. The combined M?ssbauer and magnetic study suggested the existence of significant interparticle interactions not only in the uncoated but also in the dextran coated nanoparticle assemblies. The zero-field NMR spectra of the nanoparticles at low temperatures are very similar to those of the bulk material, indicating the same hyperfine field values at saturation in accord with the performed M?ssbauer measurements. The T(2) NMR spin-spin relaxation time of the nanoparticles has also been measured as a function of temperature and found to be two orders of magnitude shorter than that of the bulk material. It is shown that the thermal fluctuations in the longitudinal magnetization of the nanoparticles in the low temperature limit may account for the shortening and the temperature dependence of the T(2) relaxation time. Thus, the low temperature NMR results are in accord with the mechanism of collective magnetic excitations, due to the precession of the magnetization around the easy direction of the magnetization at an energy minimum, a mechanism originally proposed to interpret M?ssbauer experiments in magnetic nanoparticles. The effect of the surface spins on the NMR relaxation mechanisms is also discussed.  相似文献   

15.
Proton spin-lattice relaxation times (T1) of pectoralis major muscles from normal (Line 412) and homozygous dystrophic (Line 413) chicks was measured by FONAR QED 80 at 1.69 MHz. The T1 values of dystrophic muscles (216.8 +/- 17.3 ms) was two-fold higher than those of normal muscles (110.2 +/- 8.1 msec). When these values were compared with the T1 values obtained at high frequencies (20 MHz and 32 MHz), the T1 differentiation between normal and dystrophic muscles was considerably enhanced at 1.69 MHz. Based on these results, we suggest that the high resolution of T1 obtained at low frequency (1.69 MHz) could be effectively used to detect the degenerative processes in muscles by the NMR techniques.  相似文献   

16.
NMR spectroscopical measurements of relaxation times were conducted on muscle, intestine, fatty tissue and cerebral cortex and white matter of the rat at various time intervals following removal of the tissue. It appeared that most tissues can be stored at 4 degrees C up to 24 hours without noticeable effects on NMR relaxation parameters. Exceptions are the T2 of muscle and the T1 and T2 of intestine, which tended to change in the first hour after biopsy. Relaxation parameters change considerably after fixation of the tissues. Therefore the effects of fixation have to be taken into account when carrying out NMR measurements on fixed tissues.  相似文献   

17.
In this paper chemometrics (ANOVA and PCR) is used to measure unbiased correlations between NMR spin-echo decays of pork M. Longissimus dorsi obtained through Carr-Purcell-Meiboom-Gill (CPMG) experiments at low frequency (20 MHz) and the values of 14 technological parameters commonly used to assess pork meat quality. On the basis of the ANOVA results, it is also found that the CPMG decays of meat cannot be best interpreted with a "discrete" model (i.e., by expanding the decays in a series of a discrete number of exponential components, each with a different transverse relaxation time), but rather with a "continuous" model, by which a continuous distribution of T(2)'s is allowed. The latter model also agrees with literature histological results.  相似文献   

18.
The interior surface of well-defined porous alumina membranes (Anopore) of 20 nm and 200 nm pore diameter, respectively, was coated with polymer layers generated from solution by the solvent evaporation method. Deposits of poly(dimethyl siloxane) (PDMS) with nominal thicknesses ranging from 0.15 to 4.5 nm --corresponding to submonolayer to multilayer films--were investigated, and were compared to poly(butadiene) (PB) as an example for non-wetting polymers. Molecular weights below and above the critical value were studied since the bulk dynamics of such polymers are known to be qualitatively different. First results of NMR relaxation dispersion experiments on these systems are presented, supplemented by transverse relaxation times and double-quantum measurements obtained from high-field NMR. A systematic decrease of relaxation times at low fields with decreasing polymer amount is found for PDMS, but molecules retain a high degree of mobility irrespective of molecular weight. The relaxation dispersion results are supported by T2 data and 1H residual dipolar coupling (RDC) constants, and are discussed in terms of molecular order and reorientational dynamics.  相似文献   

19.
Cramer-Rao theory and computer simulations were used to show that the errors involved in calculating the magnetization and relaxation parameters of a two-component system decrease with: (1) increasing SNR, (2) increasing number of echoes used in the fitting procedure, and (3) increasing ratio of the relaxation times of the two components, T(22)/T(21). Images of bi-compartmental phantoms of known T(2) values were acquired using an optimized imaging sequence, and an optimized fitting algorithm was used to calculate the T(2) values of the two components by fitting the resulting images to a bi-exponential decay model. Accuracy better than 6% was achieved in the calculations of the T(2) values of the two components, and region fitting provided better accuracy than pixel-by-pixel fitting. The procedures were used to calculate the T(2) and M(0) values of equine carpal bones with known degree of radiographic bone sclerosis. Although the T(2) and M(0) values of both water and fat components all decreased with the degree of radiographic bone sclerosis, the transverse relaxation of the water component, T(2W), showed a greater decrease with advanced stages of bone sclerosis.  相似文献   

20.
Nuclear magnetic resonance (NMR) techniques were applied to study the muscular dystrophy in chicks. The water proton spin-lattice relaxation times (T1) of fast, slow, and mixed muscles and plasma were measured. The T1 values of dystrophic pectoralis major and posterior latissimus dorsi (PLD) were significantly higher than those of the normal pectoralis and PLD muscles. The present results establish a direct relationship between the differences in T1 values and the severity of muscle degeneration. Consistent with this conclusion, it was also found that the T1 values of muscles unaffected in muscular dystrophy, namely, the gastrocnemius, and anterior latissimus dorsi (ALD), were not different between the normal and dystrophic chicks. Although the affected muscles of dystrophic chicks contained higher percent water and fat than those of normal chicks, the results show that the higher T1 values is dystrophic muscles were not solely due to variations in their water content. The increase in the T1 values is principally a result of altered interaction between cellular water and macromolecules in the diseased muscles. These data also point out the potential use of NMR imaging in evaluating muscle degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号