首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential scanning calorimetry (DSC) is applied to analyse the process of ice melting. Experimental results were compared to those obtained by a numerical simulation in which a conventional enthalpy formulation was applied. The effects of various parameters on the kinetics of transformations and therefore the shape of curves has been analysed and the importance of temperature gradients inside the sample evaluated.  相似文献   

2.
The main objective of this paper is to present a model for the heat transfer in the case of the melting of saline binary solution. This model is applied to calorimetry in order to determine the kinetics of the eutectic melting. The investigated cell containing the solution is a cylinder of a few mm3 in volume. By simulation, we could replicate the shape of the experimental thermogramms. The validation of the model permits determining some parameters which are inaccessible due to the small size of the cell, like the space-time evolution of the temperature inside the differential scanning calorimetry (DSC) sample.  相似文献   

3.
In the range from –50° to +130°C, the temperature dependence of the heat capacity for different kinds of gelatins with water contents of from 2 to 95% was studied by the DSC method. It was shown that, in all studied cases, metastable collagen-like structures are formed in gels or crystalline gelatins, with thermodynamic parameters depending on the formation conditions. The characteristic properties of the glass transitions in amorphous gelatins and crystalline gelatins with different melting heats and different contents of the ordered phase were established. Special attention is paid to the structural properties of free and bound water. The dependence of the glass transition temperatureT g on the bound water content was shown to be of general applicability for many denatured biopolymers. Free water in gelatins, in distinction to the bound water, does not act as a plasticizer, but forms a rigid matrix inhibiting the glass transition.
Zusammenfassung Mittels DSC wurde im Bereich –50° bis +130°C die Temperaturabhängigkeit der Wärmekapazität für verschiedene Arten von Gelantine mit einem Wassergehalt von 2 bis 95% untersucht. Es wurde gezeigt, daß in allen untersuchten Fällen metastabile kollagenähnliche Strukturen in Gelen oder kristallinen Gelantinen gebildet werden, deren thermodynamische Parameter von den Bildungsbedingungen abhängen. Es wurden die charakteristischen Eigenschaften der Glasumwandlungen in amorphen Gelantinen und kristallinen Gelantinen mit unterschiedlichen Schmelzwärmen und einem unterschiedlichen Gehalt an geordneter Phase bestimmt. Spezielle Aufmerksamkeit wurde den strukturellen Eigenschaften von freiem und gebundenem Wasser gewidmet. Es wurde gezeigt, daß die Ab-hängigkeit der GlasumwandlungstemperaturT g vom Gehalt an gebundenem Wasser generell für viele denaturierte Biopolymere anwendbar ist. Im Unterschied zu gebundenem Wasser fungiert freies Wasser in Gelatinen nicht als ein Weichmacher, bildet aber eine starre Matrix, die die Glasumwandlung verhindert.
  相似文献   

4.
The aim of the present paper is to study the melting process inside an emulsion using the non-equilibrium model of microscopic heat transfer between the emulsifying medium and the dispersed droplet of binary solution (DSC). DSC experiments are used to validate the numerical results. The effects of the heating rate, mass fraction of the dispersed saline binary solution, initial mass fraction of the solute and the sample mass on the kinetics of the melting process are examined.  相似文献   

5.
Two poly(butylene terephthalate)/polycarbonate (PBT/PC) blends with different formulations were analyzed by modulated DSC (MDSC) and conventional DSC to determine differences in crystallization behavior. A significant difference (30°C in cold crystallization temperature) between the two samples was detectable by MDSC while no significant difference was seen by conventional DSC. That indicatesthe total heat flow from MDSC is not always equivalent to the heat flow from conventional DSC as we have assumed or seen before. The reason has not been fully understood, but may be related to unusual nucleation and crystallization induced by modulation. Alternative conventional DSC methods were developed and compared to the MDSC results.Dedicated to Professor Bernhard Wunderlich on the occasion of his 65th birthdayThe authors like to thank Drs. Bernhard Wunderlich and Robert Gallucci for helpful discussion, David Shaker and Mary Parsonage for some DSC experiments. Technical support from TA Instruments is also greatly appreciated.  相似文献   

6.
This is a study for criteria to judge the melting point of semi-crystalline polymers from the DSC endotherm for polymer melting. Beyond standard indium DSC melting results an evaluation has been made on a series of polyethylenes for which crystal sizes were measured and predicted from Raman LAM analysis. The results confirm the conclusion of Prof. Wunderlich that the DSC content of melting is the proper basis of reporting melting points.Dedicated to Professor Bernhard Wunderlich on the occasion of his 65th birthday  相似文献   

7.
The multiple melting behavior of poly(1,3-propylene terephthalate) (PPT) samples after isothermal crystallization from the melt was studied. The step-scan temperature-modulated differential scanning calorimetry (TMDSC) and high rate DSC were used to investigate this behavior in conjunction with standard DSC, wide-angle X-ray diffraction (WAXD) and polarizing light microscopy (PLM). The effect of PPT average molecular weight on the melting was also examined. In general multiple endotherms after isothermal crystallization of PPT were attributed to a continuous crystal perfection process during the subsequent heating scan via melting-recrystallization-remelting. Multiple melting behavior was more pronounced for the low molecular weight PPT. Step-scan TMDSC showed that extensive recrystallization occurs in PPT samples, especially after rapid isothermal crystallization. In fact two recrystallization exothermic peaks were observed. High rate DSC revealed the initial morphology generated during the isothermal step and showed that the low and middle peaks are associated with melting of primary crystals while the high temperature peak should be attributed to melting of recrystallized material.  相似文献   

8.
The unusual mechanical properties (i.e. shape memory effect and superelasticity) of shape memory alloys (SMA) rely on the thermoelastic martensitic transformation (TMT) which is a first-order solid-solid, non-diffusive phase transition, athermal in character. Differential scanning calorimetry (DSC) is often used as a convenient method of investigating the thermal properties ofSMAs. The common practice of standard temperature calibration, required for a correct instrument performance, is here critically discussed in relation to the study of both the direct exothermic transformation on cooling, and the reverse endothermic transformation on heating in a NiTiSMA. The DSC results show that, with the standard temperature calibration, the instrument is calibrated on heating but un-calibrated on cooling. A general method is advanced to overcome this problem, intrinsically related to the dynamic character of DSC.  相似文献   

9.
Modulated temperature-DSC is a new method for measuring the thermal behaviour of materials. In this method, the response of the sample to a time-dependent signal (sinusoidal temperature change) is measured. Two different methods are known for the evaluation of the measured data. The first is the separation of the measured data into reversing and non-reversing components of heat flow. The second is based on the linear response theory and yields a complex heat capacity with a real part (storage heat capacity) and an imaginary part (loss heat capacity).

The theoretical basis and the possibilities of interpretation of both evaluation methods are investigated. The results of both methods are compared theoretically for the case of simple time-dependent processes. Experimental results are given for the glass transition process.  相似文献   


10.
A system of differential equations modeling a heat flux DSC is solved and the results are compared with those obtained using a TA Instruments Q1000™ DSC.1 It incorporates a new heat flow rate measurement technique that determines the heat flow rate between the sample and its pan. Two types of first-order transitions are investigated: melting of a pure substance and solidification of a pure substance including super-cooling. In both transitions, the peak shape obtained using the new heat flow rate measurement and predicted by the model is quite different from that measured using conventional DSC. It is shown that the differences are the result of simplifications implicit in the conventional heat flow rate measurement that is based solely on the difference between sample and reference calorimeter temperatures. Heat flow rates measured using the improved measurement agree very well with the model predictions for heat exchange between the sample and its pan.  相似文献   

11.
指出了当前流行的差示扫描量热法DSC单峰法测样品纯度所基于的假定有一些不确切的地方,并用计算机动态摸拟了DSC实验过程,结果证实了本文的论断。  相似文献   

12.
DSC and adiabatic calorimetry study of the polymorphs of paracetamol   总被引:3,自引:0,他引:3  
Monoclinic (I) and orthorhombic (II) polymorphs of paracetamol were studied by DSC and adiabatic calorimetry in the temperature range 5 - 450 K. At all the stages of the study, the samples (single crystals and powders) were characterized using X-ray diffraction. A single crystal → polycrystal II→ I transformation was observed on heating polymorph II, after which polymorph I melted at 442 K. The previously reported fact that the two polymorphs melt at different temperatures could not be confirmed. The temperature of the II→I transformation varied from crystal to crystal. On cooling the crystals of paracetamol II from ambient temperature to 5 K, a II→ I transformation was also observed, if the 'cooling-heating' cycles were repeated several times. Inclusions of solvent (water) into the starting crystals were shown to be important for this transformation. The values of the low-temperature heat-capacity of the I and II polymorphs of paracetamol were compared, and the thermodynamic functions calculated for the two polymorphs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
For temperature modulated differential scanning calorimetry (TMDSC) a simple model, the low pass filter, is presented which allows to see and calculate the influence of heat transfer into the sample on magnitude and phase shift of the modulated part of the measured heat flow rate and the heat capacity determined from it. A formula is given which enables to correct the measured magnitude of the periodic heat flow rate function and the calculated heat capacity in dependence on the thermal resistance and heat capacity of the sample. The correction becomes very important in regions where the heat capacity changes considerably as in the melting region. The approach is successfully tested with model substances with well-known excess heat capacity in the transition region.  相似文献   

14.
We have examined by DSC the complexes of myosin with actin in fibre system in the absence of nucleotides and the intermediate state of ATP hydrolysis by mimicking stable complex with myosin and ADP and beryllium fluoride in muscle fibres. Comparing the DSC results with other structural analogues of phosphate Pi leads the conclusion that the AM.ADP.BeFx complex favours the AM.ADP.Pi complex in fibre system. The deconvolution of DSC scans resulted in four transitions, the first three transition temperatures were almost independent of the intermediate state of the muscle, the last transition temperature was shifted to higher temperature, depending on the actual intermediate states of ATP hydrolysis. In AM.ADP.Vi state the transition temperature at the second and third transitions (actin binding domain and myosin rod) varied only slightly, whereas the last one (the fourth transition) shifted markedly to higher temperature depending on the ternary complex, e.g. in case of ADP plus BeFx it was 77.7 °C, the highest value in weakly binding state of myosin to actin. The sum of calorimetric enthalpies of the first and last curves was practically constant, but their fractions depended on the state of the muscle. In strongly binding state of myosin to actin (rigor, ADP state) the fraction of the first transition was much larger, than the last one, whereas in weakly binding state of myosin to actin, the fraction of the first transition decreased at the expense of the last one. It supports also the view that these transitions are parts of the same portion of the myosin molecule.  相似文献   

15.
In this research, differential scanning calorimetry (DSC) was used to determine the combustion behavior and kinetic analysis of raw and cleaned coal samples of different size fractions. DSC curves of the three coal samples (Soma, Tuncbilek and Afsin Elbistan) showed two reaction regions. The first reaction region was due to moisture loss (endothermic) and observed in the temperature range of ambient to 150°C. The second region was the exothermic region due to the combustion and observed in the temperature range of 150 to 600°C. Kinetic parameters of the samples were determined using Roger and Morris kinetic model and the results are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The melting transition of Ga and In was measured by using a nW-stabilized differential scanning calorimeter working in a magnetic bore. The magnetic effect on the thermometer was about 18 mK at 5 T, which was corrected for the measurement of the magnetic effect on the melting transition of Ga and In. The melting temperatures of Ga and In with the magnetic field of 5 T were obtained to be 8.3 and 10.2 mK, respectively higher than those without the magnetic field. These results show that the solid phase to be relatively more stable under the magnetic field. The calculated temperature shifts of the melting transition due to the magnetic field using the magneto-Clapeyron equation and the reference data of magnetic susceptibility were negative values for both Ga and In, being contradictory to the experimental results.  相似文献   

17.
18.
The multiple melting behaviour of isothermally crystallized bulk poly(trimethylene terephthalate) (PTT) observed using DSC has been correlated to the total depolarized light intensity (DLI) of thin films using hot-stage polarized light optical microscopy. The observation of partial melting, recrystallization and final melting in the DSC is correlated to the observation of the partial decrease, sudden increase and final decrease in DLI under the same heating conditions. Integration of real-time visible spectra of the transmitted light was used to separate the effects of retardation from pure birefringence of the colorful spherulitic thin-film PTT samples. The correlation of the results from these two methods has demonstrated clearly that the observed DSC multiple melting behaviour of this particular polymer is the illustrated effect of a process of continuous partial melting/recrystallization/final melting in the material during thermal analysis. The observed thermal behaviour of these metastable spherulitic materials is a complex function of their thermal history including crystallization temperature and anneal conditions, including scanning rate during thermal analysis.  相似文献   

19.
Blends obtained from Biopol D600G and polyamide 6 reveal in DSC investigations multiphase structure with a distinct crystalline polyamide 6 phase. Due to rapid crystallization of the polyamide 6 the crystallization of the Biopol D600G is retarded. The grade of crystallization of Biopol D600G is lower in the blends than in the pure state, as calculated from the melting enthalpies. Crystallization of polyamide 6 in the blends is faster and results in increasing of the grade of crystallization of polyamide 6 phase comparing to the unblended component. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Kinetics of the oxidation of magnetite (Fe3O4) to hematite (a-Fe2O3) are studied in air using simultaneous TG/DSC. The mechanism is complex and the differences between the kinetic conclusions and Arrhenius parameters based on either TG or DSC are discussed. As in our previous work on CaCO3 [1], the determination of a satisfactory baseline for the DSC results adds considerable uncertainty to those kinetic results. Consequently the calculations based on the TG data are considered superior. Solid state reactivity varies from one source of material to another and the results are compared for two different commercial samples of magnetite, both presumably prepared by wet chemical methods. These materials are much more reactive than the material studied previously [2], which had been coarsened and refined at high temperatures. In that earlier study, the metastable spinel, g-Fe2O3, was formed as an intermediate in the oxidation to the final stable form, a-Fe2O3. The exothermic reaction of the gamma to alpha form of the product during the oxidation process destroys the direct comparison between the TG and DSC results, since the former only detects the change in mass of the sample and not the crystallographic transformation. The TG results, however, represent the true oxidation process without superposition of the structural aspects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号