首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Densities of the water + ethylenediamine binary system were measured at atmospheric pressure over the whole range of compositions at temperatures from 288.15 to 353.15 K using an Anton Paar digital vibrating glass tube densimeter. Density increases with water content. The experimental excess molar volume data have been correlated with the Redlich-Kister equation, and partial molar volumes calculated at infinite dilution for each component.  相似文献   

2.
Densities of the isopropanolamine–water binary mixture system were measured over the whole range of compositions at temperatures from 283.15 to 353.15 K using an Anton Paar digital vibrating glass tube densimeter. The density of this system has been found an increasing function of the isopropanolamine composition. Excess molar volume data, calculated from the measured experimental densities, have been correlated using the Redlich–Kister equation. Parameters for the Redlich–Kister equation have been adjusted. Partial molar volumes at infinite dilution have been calculated for each component.  相似文献   

3.
4.
Densities of boldine + alcohol binary mixtures were measured over the whole accessible range of boldine compositions at temperatures from 283.15 to 333.15 K using an Anton-Paar digital vibrating glass tube densimeter. The binary systems studied include, as a solvent, seven normal alcohols from n-C1 to n-C6, n-C8, and isopropanol. The density of these systems has been found an increasing function of the boldine composition. A new methodology based on density data of solutions of solid solutes with normal alcohols is described in order to determine solid molar volume of pure solutes. This methodology was validated with pure solid naphthalene molar volumes data at 298.15 K, with an average uncertainty of 6%.  相似文献   

5.
Experimental density and the refractive index of the ternary mixture acetone + n-hexane + water, and their binary systems were experimentally measured and correlated at 298.15 K and atmospheric pressure. A maximum in refractive indices has been observed for the acetone + water system while the excess molar volume and the molar refraction change are all negative. For the mixture acetone + n-hexane, the excess molar volume is always positive and the molar refraction change of mixing showed a S-shaped dependence on acetone composition. The excess molar volumes and molar refraction changes of mixing were correlated using the Redlich-Kister expression and Cibulka equation. The coefficients and standard deviation between the experimental and fitted values were estimated. Good agreement between both results was obtained.  相似文献   

6.
Excess molar enthalpies and heat capacities of binary mixtures containing dimethyl sulfoxide (DMSO) + seven normal alkanols, namely methanol, ethanol, propan-1-ol, butan-1-ol, hexan-1-ol, octan-1-ol, and decan-1-ol, have been determined at 303.15 K and atmospheric pressure. With the exception of the DMSO-methanol system, which shows negative values, all mixtures show positive values of excess molar enthalpies over the whole range of mole fraction, increasing as the number of carbon atoms increases. Heat capacities of pure components have been determined in the range 288.15 < T (K) < 325.15. Molar heat capacities of the mixtures are always positive and decrease as the number of carbon atoms decreases. The results were fitted to the Redlich-Kister polynomial equation. Molecular interactions in the mixtures are interpreted on the basis of the results obtained.  相似文献   

7.
Densities ρ of the ternary system (ethanol + chloroform + benzene) and binaries (ethanol + chloroform) and (chloroform + benzene), have been measured at six temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15) K and pressure 101.33 kPa with an Anton Paar DMA 5000 digital vibrating tube densimeter. Excess molar volumes VE were calculated from these densities data and fitted by the polynomial Redlich–Kister (for binary data) and Nagata and Tamura (for ternary data) equations. Radojkovi? et al. equation was used for the prediction of the VE of ternary data. The obtained results have been explained in terms of different effects between molecules of present species, taking into consideration influence of temperature on them.  相似文献   

8.
The densities and speeds of sound of (cyclohexane + nonane) were measured at four temperatures from 298.15 K to 328.15 K, and the respective values of excess volumes and adiabatic compressibility were calculated. Thereafter, the densities for the last system were measured at elevated pressures (0.1 to 40) MPa at four temperatures over the range 298.15 K to 328.15 K with a high-pressure apparatus. The high-pressure density data were fitted to the Tait equation and the isothermal compressibilities were calculated with a novel procedure with the aid of this equation. The low- and high-pressure values of calculated from the density data show that the deviations from ideal behaviour in the system decrease slightly as the temperature and pressure are raised. The data were fitted to the fourth-order Redlich-Kister equation, with the maximum likelihood principle being applied for the determination of the adjustable parameters.  相似文献   

9.
Densities and viscosities of the binary mixtures of 2,4,6-trimethyl-1,3,5-trioxane with methyl acetate, ethyl acetate, and 1-butyl acetate were measured over the entire mole fractions at (298.15, 303.15, and 308.15) K. Using the experimental values of densities ρ and viscosities η, excess molar volumes VE, viscosity deviations δη were calculated. The values of excess molar volumes VE and viscosity deviations δη were fitted to the Redlich-Kister polynomial.  相似文献   

10.
Vapour–liquid equilibria and densities for the ternary system chloroform + tetrahydrofuran + cyclohexane and for the binary mixtures containing chloroform have been determined at 298.15 K. Vapour–liquid equilibrium data have been collected by head-space gas-chromatographic analysis of the vapour phase directly withdrawn from an equilibration apparatus. Density measurements have been carried out by means of a vibrating tube densimeter. Molar excess Gibbs energies GE and volumes VE, as well as activity coefficients and apparent molar volumes of the components, have been obtained from the measured quantities and discussed. The binary chloroform + tetrahydrofuran displays negative deviations from ideality, while chloroform + cyclohexane positive deviations, for both volume and Gibbs energy. The GE's and VE's for the ternary system are positive in the region rich in cyclohexane while negative in the region rich in chloroform + tetrahydrofuran. This indicates that hydrogen bonding between chloroform and tetrahydrofuran molecules produces negative values of GE and VE and strongly influences the behaviour of the ternary system.  相似文献   

11.
The apparent molar volume of paracetamol (4-acetamidophenol) in water, 0.1 M HCl and 0.154 M NaCl as solvents at (298.15, 303.15, 308.15 and 310.65) K temperatures and at a pressure of 101.325 kPa were determined from the density data obtained with the help of a vibrating-tube Anton Paar DMA-48 densimeter. The partial molar volume, Vm, of paracetamol in these solvents at different temperatures was evaluated by extrapolating the apparent molar volume versus molality plots to m = 0. In addition, the partial molar expansivity, E°, the isobaric coefficient of thermal expansion, αp, and the interaction coefficient, Sv, have also been computed. The expansivity data show dependence of E° values on the structure of the solute molecules.  相似文献   

12.
Isothermal molar volume data of (acetonitrile + water) mixtures, between T = 273.15 K and T = 318.15 K, extracted from different sources are combined and treated as a single set to even out minor differences between sources and to increase the number of data points for each temperature. Tikhonov regularization is applied to compute the isothermal first and second derivatives of these data with respect to molar composition. For the reference temperature of 298.15 K, this computation is extended to the third derivative. Generalized Cross Validation is used to guide the selection of the regularization parameter that keeps noise amplification under control. The resulting first derivatives are used to construct the partial molar volume curves which are then checked against published results. Properties of the partial molar volumes are analysed by examining their derivatives. Finally the general shape of the second derivative curve of molar volume is explained qualitatively in terms of tripartite segmentation of the molar composition interval but quantitative comparisons are required to confirm this explanation.  相似文献   

13.
The densities, ρ, of binary mixtures of tetrahydrofuran (THF) with benzene, toluene, o-xylene, m-xylene, p-xylene and mesitylene, including those of the pure liquids, were measured over the entire composition range at the temperatures (278.15, 283.15, 288.15, 293.15, 298.15, 303.15, 308.15, 313.15 and 318.15) K and atmospheric pressure. From the experimental data, the excess molar volume, V m E, partial molar volumes, m,1 and m,2 , and excess partial molar volumes, m,1 ∘E and m,2 ∘E, at infinite dilution were calculated. The V m E values were found to be negative over the whole composition range for all of the mixtures and at each temperature studied, except for THF + mesitylene, which exhibits a sigmoid trend wherein V m E changes sign from negative to positive as the concentration of THF in the mixture is increased, indicating the presence of specific interactions between THF and aromatic hydrocarbon molecules. The extent of negative deviations in the V m E values follows the order: benzene > toluene > p-xylene > m-xylene > o-xylene > mesitylene. It is observed that the V m E values depend upon the number and position of the methyl groups in these aromatic hydrocarbons.  相似文献   

14.
(Liquid + liquid) equilibrium (LLE) data for the {water + acetic acid + dibasic esters mixture (dimethyl adipate + dimethyl glutarate + dimethyl succinate)} system have been determined experimentally at T = (298.2, 308.2, and 318.2) K. Complete phase diagrams were obtained by determining solubility curve and tie-line data. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The UNIFAC model was used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data between CH2, CH3COO, CH3, COOH, and H2O functional groups. Distribution coefficients and separation factors were compared with previous studies.  相似文献   

15.
Densities ρ and viscosities η of two hydroxamic acids, N-phenyl-2-chlorobenzo- and N-o-tolyl-4-chlorobenzo-, have been determined as a function of their concentration in aqueous acetone solution at temperatures 303.15 and 313.15 K. Apparent molar volumes, standard-state partial molar volumes and relative viscosities have been calculated. The viscosity data have been analyzed using Jones-Dole equation. The activation thermodynamic parameters of viscous flow have been evaluated using Feakins equation. These were obtained to throw light on the mechanism of viscous flow. Thermodynamic interactions in solutions have been studied in terms of a number of excess functions calculated from the experimental data. The effect of hydroxamic acid concentration and temperature on these parameters has been discussed. The results were interpreted in the light of solute-solvent interactions in aquo-organic media.  相似文献   

16.
Liquid–liquid equilibrium (LLE) data for the quaternary systems of [water + acetic acid + mixed solvent (dipropyl ether + diisopropyl ether)] were measured at 298.2 K and atmospheric pressure, using various compositions of mixed solvent. Binodal curves and tie-lines for the quaternary systems have been determined in order to investigate the effect of solvent mixture, dipropyl ether (DPE) and diisopropyl ether (IPE), on extracting acetic acid from aqueous solution. A comparison of the extracting capabilities of the mixed solvents was made with respect to distribution coefficients, separation factors, and solvent free selectivity bases. Reliability of the data was confirmed by using the Othmer–Tobias and Hand plots. The tie-lines were also correlated using the UNIFAC model. The average root-mean-square deviations between the observed and calculated mass fractions for the studied systems were in the range of 10–14%.  相似文献   

17.
Total vapour pressures, measured at the temperature 313.15 K, are reported for the ternary mixture (N,N-dimethylacetamide + methanol + water), and for binary constituents (N,N-dimethylacetamide + methanol) and (N,N-dimethylacetamide + water). The present results are compared with previously obtained data for binary mixtures (amide + water) and (amide + methanol), where amide=N-methylformamide, N,N-dimethylformamide, N-methyl-acetamide, 2-pyrrolidinone and N-methylpyrrolidinone. Moreover, it was found that excess Gibbs free energy of mixing for binary mixtures varies roughly linearly with the molar volume of amide.  相似文献   

18.
The excess molar volume of (cyclohexanone + benzene, or toluene, or ethylbenzene, or styrene) were obtained from the densities measured by means of a vibrating-tube densimeter over the whole composition range at temperatures (293.15, 303.15, 313.15, 323.15, 333.15, 343.15, 353.15) K and atmospheric pressure. The excess molar volume provide the temperature dependence of in the temperature range of (293 to 353) K. The results were correlated using the fourth-order Redlich-Kister equation, with the maximum likelihood principle being applied for the determination of the adjustable parameters. It was found that the in the systems studied increase with rising temperature.  相似文献   

19.
The density of seven {(0.0087, 0.0433, 0.1302, 0.2626, 0.4988, 0.7501, and 0.9102) mole fraction of [BMIM][BF4]} binary {methanol (1) + [BMIM][BF4] (2)} (1-butyl-3-methylimidazolium tetrafluoroborate) mixtures has been measured with a vibrating-tube densimeter. Measurements were performed at temperatures from (298 to 398) K and at pressures up to 40 MPa. The total uncertainties of density, temperature, pressure, and concentration measurements was estimated to be less than 0.15 kg · m−3, 15 mK, 5 kPa, and 10−4, respectively. The uncertainties reported in this paper are expanded uncertainties at the 95% confidence level with a coverage factor of k = 2. The effect of temperature, pressure, and concentration on the density and derived volumetric properties such as excess, apparent, and partial molar volumes was studied. The measured densities were used to develop a Tait-type equation of state for the mixture. The structural properties such as direct and total correlation function integrals and cluster size were calculated using the Krichevskii function concept and the equation of state for the mixture at infinite dilution.  相似文献   

20.
This report presents a comparative analysis of temperature-dependent data on density of both dilute aqueous solutions of tetrahydrofuran (THF) and dilute solutions of water in THF, as well as standard molar volumes of water or THF as a solute. For this purpose, new results on studying the volume-related properties of THF in a water-rich region at temperatures from (278.15 to 318.15) K, with a step of 5 K, and at the ambient pressure have been derived densimetrically. In discussion, some comments on previously published investigations, being related to temperature-dependent changes in the solution density and standard molar volumes of components of the system (water + THF), have been made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号