首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of Al-Si spinel phase crystallization from calcined kaolin   总被引:1,自引:0,他引:1  
The crystallization of Al-Si spinel from medium ordered kaolin with high content of kaolinite was investigated using the differential thermal analysis (DTA). The apparent activation energy of the process was evaluated from the dependence of exothermic peak of crystallization on heating rate. Within the applied interval of heating rate (1-40 K min−1) the temperature of peak maximum increases from initial value of 1220.5 K in about 54.2 K. The apparent activation energy of the process 856±2 kJ mol−1was calculated using the Kissinger equation. The growth morphology of Al-Si spinel crystal was evaluated from the Avrami parameter. The average value of morphology parameter determined within the observed interval of heating rate is 3.08±0.03. This value indicates that crystallization mechanism of Al-Si spinel phase proceeds by bulk nucleation of the new phase with constant number of nuclei and that the three-dimensional growth of crystals is controlled by the reaction rate on the phases interface.  相似文献   

2.
Following a mini-review of crawfish aquaculture, the concentrations (mean in micrograms of analyte per gram of dried sample ± 95% confidence interval, range) determined by inductively coupled plasma-optical emission spectrometry of cadmium (0.49 ± 0.14, 0.34-0.79 ), copper (34.9 ± 5.3, 23.8-44.2), nickel (1.83 ± 0.54, 1.08-3.39), lead (18.0 ± 4.0, 9.9-23.), iron, and zinc (47.3 ± 4.6, 41.3-55.8) were relatively constant with a slight increase in iron (620.4 ± 205.8, 328.8-1072.8) in whole crawfish in a season of 4 months (February through May 2009) in Southwest Louisiana. The temperature of the crawfish ponds was monitored weekly but had no effect on the metal concentration in the crawfish trial. The copper and zinc concentrations in the crawfish pond soil decreased with increasing temperature. The other four metals showing no effect of temperature variations (increase). A comparison with a previous study showed no significant changes in the metal concentrations in the crawfish.  相似文献   

3.
Raman spectroscopy has been used for the quantitative determination of the conversion efficiency at each step in the production of ethanol from biomass. The method requires little sample preparation; therefore, it is suitable for screening large numbers of biomass samples and reaction conditions in a complex sample matrix. Dilute acid or ammonia-pretreated corn stover was used as a model biomass for these studies. Ammonia pretreatment was suitable for subsequent measurements with Raman spectroscopy, but dilute acid-pretreated corn stover generated a large background signal that surpassed the Raman signal. The background signal is attributed to lignin, which remains in the plant tissue after dilute acid pretreatment. A commercial enzyme mixture was used for the enzymatic hydrolysis of corn stover, and glucose levels were measured with a dispersive 785 nm Raman spectrometer. The glucose detection limit in hydrolysis liquor by Raman spectroscopy was 8 g L−1. The mean hydrolysis efficiency for three replicate measurements obtained with Raman spectroscopy (86 ± 4%) was compared to the result obtained using an enzymatic reaction with UV-vis spectrophotometry detection (78 ± 8%). The results indicate good accuracy, as determined using a Student's t-test, and better precision for the Raman spectroscopy measurement relative to the enzymatic detection assay. The detection of glucose in hydrolysis broth by Raman spectroscopy showed no spectral interference, provided the sample was filtered to remove insoluble cellulose prior to analysis. The hydrolysate was further subjected to fermentation to yield ethanol. The detection limit for ethanol in fermentation broth by Raman spectroscopy was found to be 6 g L−1. Comparison of the fermentation efficiencies measured by Raman spectroscopy (80 ± 10%) and gas chromatrography-mass spectrometry (87 ± 9%) were statistically the same. The work demonstrates the utility of Raman spectroscopy for screening the entire conversion process to generate lignocellulosic ethanol.  相似文献   

4.
采用热重分析方法(TGA)对煤-焦炉气共热解半焦燃烧动力学特性进行研究,建立了半焦燃烧动力学模型,采用新的数学处理方法,实现了表观活化能在半焦燃烧过程中的动态描述及平均表观活化能的求取。分析结果表明,表观活化能在半焦燃烧过程中呈“两头高、中间低”的“钟”型动态分布,其变化范围为:47~95kJ/mol,其中主要燃烧失重阶段(转化率为20%~80%)的表观活化能较低且变化幅度较小,约为47~60kJ/mol,在燃烧转化率为40%左右出现最低活化能约47kJ/mol。同一半焦燃烧过程中,表观活化能与燃烧速率动态分布具有良好的对应关系,即较大燃烧速率对应着较低表观活化能,这说明表观活化能的大小直接体现了半焦燃烧反应活性的高低  相似文献   

5.
cis-(η5-MeC5H4)W(CO)2P(OiPr)3I (1) was converted to the trans isomer 2 in the solid state (90-110 °C). The reaction was monitored by heating 1 in NMR tubes for periods of time (2-60 min), cooling the tubes to room temperature and determining the conversion by solution 31P and 1H NMR spectroscopy. The data were consistent with a first-order reaction and yielded an activation energy of 59 ± 3 kJ mol−1. Comparative kinetic data were obtained from an in situ analysis of a powder-XRD study of 1. The powder-XRD study was conducted at 80-100 °C (10-60 min), yielding an activation energy of 52 ± 2 kJ mol−1 (first-order reaction). The reaction could not be monitored by single crystal X-ray diffraction as the crystal disintegrated over time on heating. This disintegration process was monitored by optical microscopy and revealed that while the bulk crystal morphology was retained the crystal surface roughened with time. The compounds 1 and 2 were also structurally characterised by X-ray crystallographic techniques.  相似文献   

6.
Locally linear embedding (LLE) is introduced here as a nonlinear compression method for near infrared reflectance spectra of endometrial tissue sections. The LLE has been evaluated by using support vector machine (SVM) classifiers and the projected difference resolution (PDR) method. Synthetic data sets devised to resemble near-infrared spectra of tissue samples were used to characterize the performance of the LLE. The LLE was compared using principal component compression (PCC) method to evaluate nonlinear and linear compression. For a set of real tissue samples, if the compressed data were not range-scaled prior to SVM classification, the principal component compressed data gave an average prediction rate of 39 ± 2% while the LLE 94 ± 2%; if range-scaled after compression, the LLE and PCC performed evenly, with maximum average prediction values of 94 ± 2% and 93 ± 2%, respectively. The SVM without compression yielded a classification rate of 92 ± 2%. The prediction accuracy was consistent with PDR results. Without the second derivative preprocessing, the classification rates were 90 ± 3%, 89 ± 2%, and 78 ± 2% for the LLE compressed, the PCC, and no compression classifications by the SVM, respectively.  相似文献   

7.
M. Bosco 《Talanta》2007,72(2):800-807
The photodegradation of phenol using TiO2 as catalyst was studied and monitored by fluorescence excitation-emission matrix (EEM). Hydroquinone, catechol and resorcinol were the dihydroxyderivative intermediates although in lower concentrations than phenol. The data were analyzed using a three-way multivariate curve resolution alternating least squares method (MCR-ALS) and augmented matrices. The procedure was assessed using synthetic samples prepared with a {4,3} Simplex-lattice design that considered a representative range of analyte concentrations. The results were analyzed in terms of overall RMSEP for the overall data set. A detailed study was made of how the analytes behaved at each concentration level and how the concentration of the other species affected the process. The method was used to quantify phenol in photodegradation samples with an overall prediction error of 5.37%. The conversion values were fitted to pseudo first-order kinetics and the apparent rate constant was calculated to be −4.9 × 10−4 ± 5.2 × 10−5 min−1.  相似文献   

8.
Microdialysis sampling is a widely used method to sample from complex biological matrices. Cytokines are important signaling proteins that are typically recovered with low relative recovery values during microdialysis sampling. Heparin was included in the microdialysis perfusion fluid as an affinity agent to increase in vitro recovery of different cytokines through polyethersulfone (PES) microdialysis membranes with 100 kDa molecular weight cutoff. No change in fluid volumes collected from the microdialysis probes occurred when heparin was included in the perfusion fluid up to concentrations of 10 μM. The loss of heparin (10 μM) across the dialysis membrane was minimal (2.7 ± 0.9%, n = 3). Additionally, heparin at these concentrations did not interfere with the cytokine immunoassays. The control and heparin-enhanced relative recoveries for five human cytokines using 0.1 μM heparin in the microdialysis perfusion fluid flowing at 0.5 μL min−1 were (n = 3): interleukin-4 (IL-4), 4.2 ± 0.5% and 7.2 ± 3.1%; interleukin-6 (IL-6), 1.4 ± 0.8% and 3.6 ± 1.3%; interleukin-7 (IL-7), 1.3 ± 0.8% and 4.8 ± 1.8%; monocyte chemoattractant protein-1 (MCP-1), 9.0 ± 1.6% and 19.5 ± 2.7%; and tumor necrosis factor-α (TNF-α), 7.4 ± 1.3% and 16.9 ± 1.6%, respectively. Heparin increased the microdialysis sampling relative recovery of several human cytokines in vitro.  相似文献   

9.
Three novel LC-UV methods for the determination of pentamidine (PTMD) and two of its new analogs in rat plasma are described. The chromatographic conditions (wavelength, acetonitrile percentage in the mobile phase, internal standard) were optimized to have an efficient selectivity. A pre-step of extraction was simultaneously developed for each compound. For PTMD, a solid phase extraction (SPE) with Oasis® HLB cartridges was selected, while for the analogs we used protein precipitation with acetonitrile. SPE for PTMD gave excellent results in terms of extraction yield (99.7 ± 2.8) whereas the recoveries for the analogs were not so high but were reproducible as well (64.6 ± 2.6 and 36.8 ± 1.6 for analog 1 and 2, respectively).By means of a recent strategy based on accuracy profiles (β-expectation tolerance interval), the methods were successfully validated. β was fixed at 95% and the acceptability limits at ±15% as recommended by the FDA. The method was successfully validated for PTMD (29.6-586.54 ng/mL), analog 1 (74.23-742.3 ng/mL) and analog 2 (178.12-890.6 ng/mL). The first concentration level tested was considered as the LLOQ (lower limit of quantification) for PTMD and analog 1 whereas for analog 2, the LLOQ was not the first level tested and was raised to 178.12 ng/mL.  相似文献   

10.
A kinetic study of l-isoleucine transport through a liquid membrane containing di(2-ethylhexyl) phosphoric acid (D2EHPA) in kerosene is presented. The influences of pH in the aqueous feed solution, D2EHPA concentration in the organic phase, the stripping solution composition and H2SO4 concentration in the stripping solution were investigated, and the effects of stirring speed and temperature on the transport of l-isoleucine through a bulk liquid membrane (BLM) were studied. The kinetics of l-isoleucine transport could be analyzed in the formalism of a reversible pseudo-first-order reaction followed by an irreversible pseudo-first-order reaction. The pseudo-first-order apparent rate constants of the interfacial transport of l-isoleucine species are determined for the liquid membrane, at various temperatures. The apparent activation energy values are 21.3±1.9, 57.6±5.1 and 31.8±2.7 kJ mol−1 for the extraction reaction, extraction back reaction and stripping reaction, respectively.  相似文献   

11.
The ability of boronate adsorption to clear Escherichia coli impurities directly from plasmid-containing lysates (∼pH 5.2) was evaluated. Results show that 3-aminophenyl boronate (PB) controlled pore glass (CPG) is able to adsorb not only those species that bear cis-diol groups (RNA, lipopolysaccharides-LPS), and are thus able to form covalent bonds with boronate, but also cis-diol-free proteins and genomic DNA (gDNA) fragments, while leaving most plasmid DNA in solution. Control runs performed with phenyl Sepharose and with PB-free CPG beads ruled out hydrophobic interactions with the phenyl ring and non-specific interactions with the glass matrix, respectively, as being responsible for RNA and gDNA adsorption. In batch mode, up to 97.6 ± 3.1% of RNA, 94.6 ± 0.8% of proteins and 96.7 ± 11.7% of gDNA were cleared after 30 min, with a plasmid yield of 64%. In fixed-bed mode, most of the plasmid was recovered in the flowthrough (96.2 ± 4.0%), even though the RNA (65.5 ± 2.8%), protein (84.4 ± 1.3%) and gDNA clearance (44.7 ± 14.1%) were not as effective. In both cases, the LPS content was removed to a residual value of less than 0.005 EU/ml. The method is fast and straightforward, circumvents the need for pre-treatment of the feed and may contribute to shorten plasmid purification processes, as the treated streams can proceed directly to the final polishing steps.  相似文献   

12.
We have critically examined the various relaxation processes occurring in poly(cyclohexylmethacrylate) using dielectric spectroscopy. In addition to the α- and γ-processes found earlier by other workers, we have detected a secondary (β-)process in the temperature range of 293-353 K with an activation energy of about 73 ± 5 kJ/mol.  相似文献   

13.
Isothermal depolymerization of the two polymers of C60, i.e. of 1D orthorhombic phase (O) and of “dimer state” (DS) have been studied by means of Infra-red spectroscopy in the temperature ranges 383-423 and 453-503 K, respectively. Differential Scanning Calorimetry (DSC) has been used to obtained depolymerization polytherms for O-phase and DS. Standard set of reaction models have been applied to describe depolymerization behavior of O-phase and DS. The choice of the reaction models was based primarily on the isotherms. Several models however demonstrated almost equal goodness of fit and were statistically indistinguishable. In this case we looked for simpler/more realistic mechanistic model of the reaction. For DS the first-order expression (Mampel equation) with the activation energy Ea = 134 ± 7 kJ mol−1 and preexponential factor ln(A/s−1) = 30.6 ± 2.1, fitted the isothermal data. This activation energy was nearly the same as the activation energy of the solid-state reaction of dimerization of C60 reported in the literature. This made the enthalpy of depolymerization close to zero in accord with the DSC data on depolymerization of DS. Mampel equation gave the best fit to the polythermal data with Ea = 153 kJ mol−1 and preexponential factor ln(A/s−1) = 35.8. For O-phase two reasonable reaction models, i.e. Mampel equation and “contracting spheres” model equally fitted to the isothermal data with Ea = 196 ± 2 and 194 ± 8 kJ mol−1, respectively and ln(A/s−1) = 39.1 ± 0.5 and 37.4 ± 0.2, respectively and to polythermal data with Ea = 163 and 170 kJ mol−1, respectively and ln(A/s−1) = 32.5 and 29.5, respectively.  相似文献   

14.
Four sensitive, selective and precise stability-indicating methods for the determination of Clopidogrel Bisulfate (CLP) in presence of its alkaline degradate and in pharmaceutical formulations were developed and validated. Method A is a second derivative (D2) spectrophotometric one, which allows the determination of CLP in presence of its alkaline degradate at 219.6, 270.6, 274.2 and 278.4 nm (corresponding to zero-crossing of the degradate) over a concentration range of 4-37 μg mL−1 with mean percentage recoveries 99.81 ± 0.893, 99.72 ± 0.668, 99.88 ± 0.526 and 100.46 ± 0.646, respectively. CLP can be determined in the presence of up to 65% of its degradate. D2 method was used to study the kinetic of CLP alkaline degradation that was found to follow a first-order reaction. The t1/2 was 6.42 h while K (reaction rate constant) was 0.1080 mol/h. Method B is the first derivative of the ratio spectra (DD1) spectrophotometric method, by measuring the peak amplitude at 217.6 and 229.4 nm using acetonitrile and CLP can be determined in the presence of up to 70% of its degradate. The linearity range was 5-38 μg mL−1 with mean percentage recoveries 99.88 ± 0.909 and 99.70 ± 0.952, respectively. Method C based on the determination of CLP by the bivariate calibration depending on simple mathematic algorithm which provides simplicity and rapidity. The method depends on quantitative evaluation of the absorbance at 210 and 225 nm over a concentration range 5-38 μg mL−1 with mean percentage recovery 99.27 ± 1.115. CLP can be determined in the presence of up to 70% of its degradate. Method D is a TLC-densitometric one, where CLP was separated from its degradate on silica gel plates using hexane:methanol:ethyl acetate (8.7:1:0.3, v/v/v) as a developing system. This method depends on quantitative densitometric evaluation of thin layer chromatogram of CLP at 248 nm over a concentration range of 0.6-3 μg/band with mean percentage recovery 99.97 ± 1.161. CLP can be determined in the presence of up to 90% of its alkaline degradate. The selectivity of the proposed methods was checked using laboratory prepared mixtures. The proposed methods have been successfully applied to the analysis of CLP in pharmaceutical dosage forms without interference from other dosage form additives and the results were statistically compared with the official method.  相似文献   

15.
The new approach has been developed for the synthesis of nickel (Ni), cobalt (Co) and iron (Fe) powders from the appropriate oxides by the solid combustion method. The reduction was made by sodium azide (NaN3) at the presence of carbon in the argon atmosphere. The variation of combustion temperature and velocity was performed by using alkali metal salt as an inert diluent. The values of combustion parameters were measured and also the temperature distribution in a combustion wave are obtained. The geometric sizes of reactionary zones and the activation energy of the process were estimated. The optimum conditions for single-phase metal powder synthesis were found. Powders fabricated in this way had cubic structure and particles size about 0.5-2.0 μm for Ni, Co and 1-3 μm for Fe. In a number of cases the formation of spherical particles with the average size about 5-15 μm were observed.  相似文献   

16.
The anionic polymerization of ε-caprolactam initiated with 0.5 mol % ethyl magnesium bromide in the presence of cycloaliphatic esters (lactones), such as γ-butyrolactone, δ-valerolactone and ε-caprolactone, has been studied in the temperature range 150-190 °C and concentration up to 5 mol %. To explain reaction mechanism, the polymerizations carried out in the presence n-butyl acetate and dimethyl terephthalate were also evaluated. The apparent rate constants and apparent activation energies were determined for the initial stage of polymerization. The non-integer orders of the polyreaction with respect to the concentration of lactone introduced indicated complex polymerization mechanism.  相似文献   

17.
This paper describes an efficient and sensitive method for determining five energetic compounds at trace levels (ng/mL) in blood by gas chromatography with electron capture detection (GC/ECD). For seven test concentrations (1-1250 ng/mL), the average recoveries (%) were 104 ± 16, 108 ± 22, 105 ± 14, 100 ± 22 and 108 ± 16 for hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and 2,4,6-trinitrotoluene (TNT) (n = 84), respectively. Analysis of DNX and RDX produced lower precision than other energetic compounds. Acetonitrile extracts of blood samples should be analyzed immediately as the test compounds can transform into unknown compounds, which lowered the recovery by 0-45% within 10 days at room temperature (∼20 °C). Maintaining sample extracts at 4 °C decreased loss of test compounds. The method described herein was validated by different analysis teams on different days. Two-way ANOVA indicated that there was no significant difference between analysis teams or days of analysis. The method was successfully employed in the analysis of blood samples from a mouse dosing study involving TNX and RDX.  相似文献   

18.
A method for the extraction of triethyl lead (TEL+), trimethyl lead (TML+), and Pb2+ from sand was developed using supercritical modified CO2-CH3OH extraction and in situ complexation with sodium diethyldithiocarbamate (NaDDTC) using a 25 factorial exploratory design is described. The screened variables were (i) pressure (69-193 bar), (ii) temperature (40-150 °C), (iii) ligand amount (0-100 mg), (iv) methanol volume (0.0-0.5 mL) and (v) static time (0-45 min). The optimum extraction conditions found were as follow: pressure, 193 bar; temperature, 40 °C; amount of NaDDTC, 100 mg; methanol volume, 0.5 mL; static time 45 min; and CO2 flow rate, 1 mL min−1. Under these conditions the following recoveries were obtained (TML+ 97 ± 2%, TEL+ 70 ± 5%, and Pb2+ 100 ± 4%). The presence of NaDDTC is not necessary for the extraction of TML+ and TEL+, but it is a very significative parameter for Pb2+. A second experimental design 22 + star for temperature and pressure was realized, but the results were not better than those of the first model. SFE extract derivatization was achieved with pentylmagnesium bromide, and target analyte determination was carried out by gas chromatography-mass spectrometry. Detection limits in the full-scan mode were 4, 10, and 39 pg as lead for TMPeL, TEPeL and PbPe4, respectively. The method was validated with urban dust containing TML+ (CRM 605. Pb 7.9 ±1.2 μg kg−1) and river sediment containing inorganic lead (GBW08301. Pb 79.0 ± 12.0 mg kg−1) as reference materials. The proposed method was applied to lead analysis in sand collected from an oil-polluted beach in Chile.  相似文献   

19.
A procedure for the extraction and determination of methyl mercury and mercury (II) in fish muscle tissues and sediment samples is presented. The procedure involves extraction with 5% (v/v) 2-mercaptoethanol, separation and determination of mercury species by HPLC-ICPMS using a Perkin-Elmer 3 μm C8 (33 mm × 3 mm) column and a mobile phase 3 containing 0.5% (v/v) 2-mercaptoethanol and 5% (v/v) CH3OH (pH 5.5) at a flow rate 1.5 ml min−1 and a temperature of 25 °C. Calibration curves for methyl mercury (I) and mercury (II) standards were linear in the range of 0-100 μg l−1 (r2 = 0.9990 and r2 = 0.9995 respectively). The lowest measurable mercury was 0.4 μg l−1 which corresponds to 0.01 μg g−1 in fish tissues and sediments. Methyl mercury concentrations measured in biological certified reference materials, NRCC DORM - 2 Dogfish muscle (4.4 ± 0.8 μg g−1), NRCC Dolt - 3 Dogfish liver (1.55 ± 0.09 μg g−1), NIST RM 50 Albacore Tuna (0.89 ± 0.08 μg g−1) and IRMM IMEP-20 Tuna fish (3.6 ± 0.6 μg g−1) were in agreement with the certified value (4.47 ± 0.32 μg g−1, 1.59 ± 0.12 μg g−1, 0.87 ± 0.03 μg g−1, 4.24 ± 0.27 μg g−1 respectively). For the sediment reference material ERM CC 580, a methyl mercury concentration of 0.070 ± 0.002 μg g−1 was measured which corresponds to an extraction efficiency of 92 ± 3% of certified values (0.076 ± 0.04 μg g−1) but within the range of published values (0.040-0.084 μg g−1; mean ± s.d.: 0.073 ± 0.05 μg g−1, n = 40) for this material. The extraction procedure for the fish tissues was also compared against an enzymatic extraction using Protease type XIV that has been previously published and similar results were obtained. The use of HPLC-HGAAS with a Phenomenox 5 μm Luna C18 (250 mm × 4.6 mm) column and a mobile phase containing 0.06 mol l−1 ammonium acetate (Merck Pty Limited, Australia) in 5% (v/v) methanol and 0.1% (w/v) l-cysteine at 25 °C was evaluated as a complementary alternative to HPLC-ICPMS for the measurement of mercury species in fish tissues. The lowest measurable mercury concentration was 2 μg l−1 and this corresponds to 0.1 μg g−1 in fish tissues. Analysis of enzymatic extracts analysed by HPLC-HGAAS and HPLC-ICPMS gave equivalent results.  相似文献   

20.
Ulusoy Hİ  Akçay M  Gürkan R 《Talanta》2011,85(3):1585-1591
The simple and rapid preconcentration technique using cloud point extraction (CPE) was applied for the determination of As(V) and total inorganic arsenic (As(V) plus As(III)) in water samples by means of FAAS. As(V) has formed an ion-pairing complex with Pyronine B in the presence of cetyl pyridinium chloride (CPC) at pH 8.0 and extracted into the non-ionic surfactant Triton X-114, after centrifugation the surfactant-rich phase was separated and diluted with 1.0 mol L−1 HNO3 in methanol. The proposed method is very versatile and economic because it exclusively used conventional FAAS. After optimization of the CPE conditions, a preconcentration factor of 120, the detection and quantification limits of 1.67 and 5.06 μg L−1 with a correlation coefficient of 0.9978 were obtained from the calibration curve constructed in the range of 5.0-2200 μg L−1. The relative standard deviation, RSD as a measure of precision was less than 4.1% and the recoveries were in the range of 98.2-102.4%, 97.4-101.2% and 97.8-101.1% for As(V), As(III) and total As, respectively. The method was validated by the analysis of standard reference materials, TMDA-53.3 and NIST 1643e and applied to the determination of As(III) and As(V) in some real samples including natural drinking water and tap water samples with satisfactory results. The results obtained (34.70 ± 1.08 μg L−1 and 60.25 ± 1.07 μg L−1) were in good agreement with the certified values (34.20 ± 1.38 μg L−1 and 60.45 ± 1.78 μg L−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号